. 24/7 Space News .
TIME AND SPACE
A peek at the birth of the universe
by Staff Writers
Bielefeld, Germany (SPX) Jul 26, 2019

The SKA will be the first global science organisation with locations on three continents: Australia, Africa, and Europe. In addition, data centres are being set up around the world. A special challenge lies in dealing with the enormous volume of data: the SKA will collect over 600 petabytes of observation data per year-- equivalent to the storage capacity of more than half a million laptops.

The Square Kilometre Array (SKA) is set to become the largest radio telescope on Earth. Bielefeld University researchers together with the Max Planck Institute for Radio Astronomy (MPIfR) and international partners have now examined the SKA-MPG telescope--a prototype for the part of the SKA that receives signals in the mid-frequency range.

The study, published in the journal Monthly Notices of the Royal Astronomical Society, shows that the telescope is not only a prototype to test the SKA design, but can also be used on its own to provide insights into the origin of the Universe. The German Federal Ministry of Education and Research (BMBF) is funding the work on the SKA-MPG through a joint research project coordinated by Bielefeld University.

'The SKA-MPG telescope in South Africa will help us to understand the cosmic background Radiation,' says Dr Aritra Basu, lead author of the study and physicist in Bielefeld University's Astroparticle Physics and Cosmology Working Group. The cosmic background radiation is light in the microwave range that was produced shortly after the Big Bang, and exploring it provides information about the origin of the Universe.

'However, measurements of the cosmic background radiation are distorted by other effects in the foreground, such as ultrafast electrons in the magnetic field of the Milky Way. In order to measure cosmic background radiation, we need to know more about these effects. Our study shows that the new telescope is excellent for investigating foreground radiation with ultra precision,' says Basu.

The SKA-MPG telescope was jointly developed by the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn and MT-Mechatronics GmbH. The abbreviation 'MPG' stands for the Max Planck Society, which is funding the telescope. The radio telescope has a diameter of 15 metres and can receive signals between 1.7 and 3.5 GHz. It is currently being assembled in the South Africa's Karoo desert. Gundolf Wieching of the MPIfR, project leader of the telescope, expects first regular scientific use in autumn 2019.

The radio telescope is primarily designed as a prototype for a part of the SKA that receives signals from a medium radio frequency range. If the prototype performs well in a series of tests, around 200 such telescopes will be built for the SKA in South Africa. The SKA will observe medium as well as low radio frequencies.

This second instrument will consist of thousands of small radio antennae that can be combined to simulate a huge radio telescope. The two parts of the SKA will then collect Signals over one square kilometre in Australia and South Africa--hence the name 'Square Kilometre Array'.

'Even with our prototype, we are able to look deep into the Universe thanks to a clever design for the telescope and new developments in receiver and backend technology,' says Dr Hans-Rainer Klockner, astrophysicist at the MPIfR. 'I am curious to see what we will discover once 200 of these telescopes are synchronised for the SKA.'

The SKA will be used, for example, to explore gravitational waves and dark energy, or to test Einstein's theory of relativity under extreme conditions.

The SKA will be the first global science organisation with locations on three continents: Australia, Africa, and Europe. In addition, data centres are being set up around the world. A special challenge lies in dealing with the enormous volume of data: the SKA will collect over 600 petabytes of observation data per year-- equivalent to the storage capacity of more than half a million laptops.

The German research institutions involved in the preparatory work for the SKA have joined forces in the 'German Long Wavelength Consortium', including Bielefeld University. The consortium's projects also include D-MeerKAT, in which the prototype SKA-MPG telescope is being evaluated--for example by the recently published study. The German Federal Ministry of Education and Research is funding D-MeerKAT as a joint research project.

Professor Dr Dominik Schwarz, head of the Bielefeld Astroparticle Physics and Cosmology Working Group, coordinates D-MeerKAT. 'Our investigations with the SKA-MPG telescope are an important independent contribution to modern cosmology--with a lot of work and a bit of luck, we may be able to open a new window into understanding the Big Bang,' says Schwarz.

Research paper


Related Links
Bielefeld University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New Measurement of Cosmic Expansion Rate Is "Stuck in the Middle"
Washington DC (SPX) Jul 17, 2019
A team of collaborators from Carnegie and the University of Chicago used red giant stars that were observed by the Hubble Space Telescope to make an entirely new measurement of how fast the universe is expanding, throwing their hats into the ring of a hotly contested debate. Their result - which falls squarely between the two previous, competing values - is published in The Astrophysical Journal. Nearly a century ago, Carnegie astronomer Edwin Hubble discovered that the universe has been growing c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA seeks ideas from US firms on future lunar lander

Former NASA flight director Chris Kraft dies at 95

Japan's Noguchi to Be 1st Foreign Astronaut to Join New US Spacecraft Crew for ISS Mission

US spacecraft's solar sail successfully deploys

TIME AND SPACE
SpaceX cargo launch to space station now targeting Wednesday

Apollo's legacy: A quiet corner of Alabama that is forever Germany

India to make new bid to launch Moon rocket on Monday

Von Braun: Apollo hero, rocket builder for Hitler, father

TIME AND SPACE
ExoMars radio science instrument readied for Red Planet

Mars 2020 Rover: T-Minus One Year and Counting

Red wine compound could help protect astronauts on trip to Mars

Red wine's resveratrol could help Mars explorers stay strong

TIME AND SPACE
Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

TIME AND SPACE
Why isn't Australia in deep space?

OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Maintaining large-scale satellite constellations using logistics approach

Maxar begins production on Legion-class satellite for Ovzon

TIME AND SPACE
First of Two Van Allen Probes Spacecraft Ceases Operations

Probe opened in France over radioactive water rumours

Raytheon get $27.4M payment for work on Navy's AMDR program

Mapping the Moon and Worlds Beyond

TIME AND SPACE
ELSI scientists discover new chemistry that may help explain the origins of cellular life

Scientists deepen understanding of magnetic fields surrounding Earth and other planets

Super salty, subzero Arctic water provides peek at possible life on other planets

Astronomers expand cosmic "cheat sheet" in hunt for life

TIME AND SPACE
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.