. 24/7 Space News .
TIME AND SPACE
A particle purely made of nuclear force
by Staff Writers
Vienna, Austria (SPX) Oct 15, 2015


Nucleons consist (left) of quarks (matter particles) and gluons (force particles). A glueball (right) is made up purely of gluons. Image courtesy TU Wien. For a larger version of this image please go here.

For decades, scientists have been looking for so-called "glueballs". Now it seems they have been found at last. A glueball is an exotic particle, made up entirely of gluons - the "sticky" particles that keep nuclear particles together. Glueballs are unstable and can only be detected indirectly, by analysing their decay. This decay process, however, is not yet fully understood.

Professor Anton Rebhan and Frederic Brunner from TU Wien (Vienna) have now employed a new theoretical approach to calculate glueball decay. Their results agree extremely well with data from particle accelerator experiments. This is strong evidence that a resonance called "f0(1710)", which has been found in various experiments, is in fact the long-sought glueball. Further experimental results are to be expected in the next few months.

Forces are Particles too
Protons and neutrons consist of even smaller elementary particles called quarks. These quarks are bound together by strong nuclear force. "In particle physics, every force is mediated by a special kind of force particle, and the force particle of the strong nuclear force is the gluon", says Anton Rebhan (TU Wien).

Gluons can be seen as more complicated versions of the photon. The massless photons are responsible for the forces of electromagnetism, while eight different kinds of gluons play a similar role for the strong nuclear force. However, there is one important difference: gluons themselves are subject to their own force, photons are not. This is why there are no bound states of photons, but a particle that consists only of bound gluons, of pure nuclear force, is in fact possible.

In 1972, shortly after the theory of quarks and gluons was formulated, the physicists Murray Gell-Mann and Harald Fritsch speculated about possible bound states of pure gluons (originally called "gluonium", today the term "glueball" is used).

Several particles have been found in particle accelerator experiments which are considered to be viable candidates for glueballs, but there has never been a scientific consensus on whether or not one of these signals could in fact be the mysterious particle made of pure force. Instead of a glueball, the signals found in the experiments could also be a combination of quarks and antiquarks. Glueballs are too short-lived to detect them directly. If they exist, they have to be identified by studying their decay.

Candidate f0(1710) decays strangely
"Unfortunately, the decay pattern of glueballs cannot be calculated rigorously", says Anton Rebhan. Simplified model calculations have shown that there are two realistic candidates for glueballs: the mesons called f0(1500) and f0(1710). For a long time, the former was considered to be the most promising candidate.

The latter has a higher mass, which agrees better with computer simulations, but when it decays, it produces many heavy quarks (the so-called "strange quarks"). To many particle scientists, this seemed implausible, because gluon interactions do not usually differentiate between heavier and lighter quarks.

Anton Rebhan and his PhD-student Frederic Brunner have now made a major step forward in solving this puzzle by trying a different approach. There are fundamental connections between quantum theories describing the behaviour of particles in our three dimensional world and certain kinds of gravitation theories in higher dimensional spaces. This means that certain quantum physical questions can be answered using tools from gravitational physics.

"Our calculations show that it is indeed possible for glueballs to decay predominantly into strange quarks", says Anton Rebhan. Surprisingly, the calculated decay pattern into two lighter particles agrees extremely well with the decay pattern measured for f0(1710). In addition to that, other decays into more than two particles are possible. Their decay rates have been calculated too.

Further Data is Expected Soon
Up until now, these alternative glueball decays have not been measured, but within the next few months, two experiments at the Large Hadron Collider at CERN (TOTEM and LHCb) and one accelerator experiment in Beijing (BESIII) are expected to yield new data. "These results will be crucial for our theory", says Anton Rebhan.

"For these multi-particle processes, our theory predicts decay rates which are quite different from the predictions of other, simpler models. If the measurements agree with our calculations, this will be a remarkable success for our approach."

It would be overwhelming evidence for f0(1710) being a glueball. And in addition to that, it would once again show that higher dimensional gravity can be used to answer questions from particle physics - in a way it would be one more big success of Einstein's theory of general relativity, which turns 100 years old next month.

Original Paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
On the precision frontier: A new calculation holds promise
Chicago IL (SPX) Oct 15, 2015
A team of theoretical high-energy physicists in the Fermilab Lattice and MILC Collaborations has published a new high-precision calculation that could significantly advance the indirect search for physics beyond the Standard Model (SM). The calculation applies to a particularly rare decay of the B meson (a subatomic particle), which is sometimes also called a "penguin decay" process. After ... read more


TIME AND SPACE
Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

TIME AND SPACE
Pebbles on Mars likely traveled tens of miles down a riverbed

To save on weight, a detour to the moon is the best route to Mars

Opportunity working at 'Marathon Valley' before winter relocation

The Journey to Mars: Bridging the Technology Gap

TIME AND SPACE
NASA, Israel ink space cooperation agreement

Magnetic sail tech alternative to rocket-based space travel

NASA Appoints Mark Kirasich To Serve As Orion Program Manager

Back to the Future: Truth is stranger than sci-fi

TIME AND SPACE
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

TIME AND SPACE
Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

TIME AND SPACE
Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

TIME AND SPACE
Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

TIME AND SPACE
Methodology could lead to more sustainable manufacturing systems

New deposition technique enhances optoelectronic properties of lasers

Mathematicians find 'magic key' to drive Ramanujan's taxi-cab number

Using optical fiber to generate a two-micron laser









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.