Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

A new window into electron behavior
by Staff Writers
Boston MA (SPX) Nov 23, 2017

Scientists at MIT have found a way to visualize electron behavior beneath a material's surface. The team's technique is based on quantum mechanical tunneling, a process by which electrons can traverse energetic barriers by simply appearing on the other side. In this image, researchers show the measured tunneling spectra at various densities, with high measurements in red.

For the first time, physicists have developed a technique that can peer deep beneath the surface of a material to identify the energies and momenta of electrons there.

The energy and momentum of these electrons, known as a material's "band structure," are key properties that describe how electrons move through a material. Ultimately, the band structure determines a material's electrical and optical properties.

The team, at MIT and Princeton University, has used the technique to probe a semiconducting sheet of gallium arsenide, and has mapped out the energy and momentum of electrons throughout the material. The results are published in the journal Science.

By visualizing the band structure, not just at the surface but throughout a material, scientists may be able to identify better, faster semiconductor materials. They may also be able to observe the strange electron interactions that can give rise to superconductivity within certain exotic materials.

"Electrons are constantly zipping around in a material, and they have a certain momentum and energy," says Raymond Ashoori, professor of physics at MIT and a co-author on the paper.

"These are fundamental properties which can tell us what kind of electrical devices we can make. A lot of the important electronics in the world exist under the surface, in these systems that we haven't been able to probe deeply until now. So we're very excited - the possibilities here are pretty vast."

Ashoori's co-authors are postdoc Joonho Jang and graduate student Heun Mo Yoo, along with Loren Pfeffer, Ken West, and Kirk Baldwin, of Princeton University.

Pictures beneath the surface
To date, scientists have only been able to measure the energy and momentum of electrons at a material's surface. To do so, they have used angle-resolved photoemission spectroscopy, or ARPES, a standard technique that employs light to excite electrons and make them jump out from a material's surface. The ejected electrons are captured, and their energy and momentum are measured in a detector. Scientists can then use these measurements to calculate the energy and momentum of electrons within the rest of the material.

"[ARPES] is wonderful and has worked great for surfaces," Ashoori says. "The problem is, there is no direct way of seeing these band structures within materials."

In addition, ARPES cannot be used to visualize electron behavior in insulators - materials within which electric current does not flow freely. ARPES also does not work in a magnetic field, which can greatly alter electronic properties inside a material.

The technique developed by Ashoori's team takes up where ARPES leaves off and enables scientists to observe electron energies and momenta beneath the surfaces of materials, including in insulators and under a magnetic field.

"These electronic systems by their nature exist underneath the surface, and we really want to understand them," Ashoori says. "Now we are able to get these pictures which have never been created before."

Tunneling through
The team's technique is called momentum and energy resolved tunneling spectroscopy, or MERTS, and is based on quantum mechanical tunneling, a process by which electrons can traverse energetic barriers by simply appearing on the other side - a phenomenon that never occurs in the macroscopic, classical world which we inhabit. However, at the quantum scale of individual atoms and electrons, bizarre effects such as tunneling can occasionally take place.

"It would be like you're on a bike in a valley, and if you can't pedal, you'd just roll back and forth. You would never get over the hill to the next valley," Ashoori says. "But with quantum mechanics, maybe once out of every few thousand or million times, you would just appear on the other side. That doesn't happen classically."

Ashoori and his colleagues employed tunneling to probe a two-dimensional sheet of gallium arsenide. Instead of shining light to release electrons out of a material, as scientists do with ARPES, the team decided to use tunneling to send electrons in.

The team set up a two-dimensional electron system known as a quantum well. The system consists of two layers of gallium arsenide, separated by a thin barrier made from another material, aluminum gallium arsenide. Ordinarily in such a system, electrons in gallium arsenide are repelled by aluminum gallium arsenide, and would not go through the barrier layer.

"However, in quantum mechanics, every once in a while, an electron just pops through," Jang says.

The researchers applied electrical pulses to eject electrons from the first layer of gallium arsenide and into the second layer. Each time a packet of electrons tunneled through the barrier, the team was able to measure a current using remote electrodes. They also tuned the electrons' momentum and energy by applying a magnetic field perpendicular to the tunneling direction.

They reasoned that those electrons that were able to tunnel through to the second layer of gallium arsenide did so because their momenta and energies coincided with those of electronic states in that layer. In other words, the momentum and energy of the electrons tunneling into gallium arsenide were the same as those of the electrons residing within the material.

By tuning electron pulses and recording those electrons that went through to the other side, the researchers were able to map the energy and momentum of electrons within the material. Despite existing in a solid and being surrounded by atoms, these electrons can sometimes behave just like free electrons, albeit with an "effective mass" that may be different than the free electron mass.

This is the case for electrons in gallium arsenide, and the resulting distribution has the shape of a parabola. Measurement of this parabola gives a direct measure of the electron's effective mass in the material.

Exotic, unseen phenomena
The researchers used their technique to visualize electron behavior in gallium arsenide under various conditions. In several experimental runs, they observed "kinks" in the resulting parabola, which they interpreted as vibrations within the material.

"Gallium and arsenic atoms like to vibrate at certain frequencies or energies in this material," Ashoori says. "When we have electrons at around those energies, they can excite those vibrations. And we could see that for the first time, in the little kinks that appeared in the spectrum."

They also ran the experiments under a second, perpendicular magnetic field and were able to observe changes in electron behavior at given field strengths.

"In a perpendicular field, the parabolas or energies become discrete jumps, as a magnetic field makes electrons go around in circles inside this sheet," Ashoori says.

"This has never been seen before."

The researchers also found that, under certain magnetic field strengths, the ordinary parabola resembled two stacked donuts.

"It was really a shock to us," Ashoori says.

They realized that the abnormal distribution was a result of electrons interacting with vibrating ions within the material.

"In certain conditions, we found we can make electrons and ions interact so strongly, with the same energy, that they look like some sort of composite particles: a particle plus a vibration together," Jang says.

Further elaborating, Ashoori explains that "it's like a plane, traveling along at a certain speed, then hitting the sonic barrier. Now there's this composite thing of the plane and the sonic boom. And we can see this sort of sonic boom - we're hitting this vibrational frequency, and there's some jolt happening there."

The team hopes to use its technique to explore even more exotic, unseen phenomena below the material surface.

"Electrons are predicted to do funny things like cluster into little bubbles or stripes," Ashoori says. "These are things we hope to see with our tunneling technique. And I think we have the power to do that."

Nearby pulsars shed light on the antimatter puzzle
Krakow, Poland (SPX) Nov 27, 2017
There are too many high-energy positrons in the cosmic rays reaching the Earth. These positrons (particles that are antimatter equivalents of electrons) could be being produced by pulsars in our vicinity. The most recent measurements from the HAWC Observatory in Mexico have practically excluded this possibility, strengthening the competing and much more exotic hypothesis concerning the origin of ... read more

Related Links
Massachusetts Institute of Technology
Understanding Time and Space

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

New motion sensors major step towards cheaper wearable technology

Can a magnetic sail slow down an interstellar probe

Flat-Earther's self-launch plan hits a snag

Aerojet Rocketdyne supports ULA Delta II launch of JPSS-1

Old Rivals India, China Nurture New Rivalry in Satellite Launch Business

NASA launches next-generation weather satellite

Gadgets for Mars

Ice shapes the landslide landscape on Mars

Previous evidence of water on Mars now identified as grainflows

Winds Blow Dust off the Solar Panels Improving Energy Levels

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

Astronaut meets volcano

European Space Week starts in Estonia

Booming life for 'PUBG' death-match computer game

3rd SES bids farewell to ANGELS satellite

New way to write magnetic info could pave the way for hardware neural networks

Borophene shines alone as 2-D plasmonic material

First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement