Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CARBON WORLDS
A new way to make sheets of graphene
by David Chandler, MIT News Office
Boston MA (SPX) May 27, 2014


Illustrated here is a new process for making graphene directly on a nonmetal substrate. First, a nickel layer is applied to the material, in this case silicon dioxide (SiO2). Then carbon is deposited on the surface, where it forms layers of graphene above and beneath the SiO2. The top layer of graphene, attached to the nickel, easily peels away using tape (or, for industrial processes, a layer of adhesive material), leaving behind just the lower layer of graphene stuck to the substrate. Image courtesy of the researchers.

Graphene's promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications. But one of the biggest limitations to wider use of the strong, lightweight, highly conductive material has been the hurdle of fabrication on an industrial scale.

Initial work with the carbon material, which forms an atomic-scale mesh and is just a single atom thick, has relied on the use of tiny flakes, typically obtained by quickly removing a piece of sticky tape from a block of graphite - a low-tech system that does not lend itself to manufacturing. Since then, focus has shifted to making graphene films on metal foil, but researchers have faced difficulties in transferring the graphene from the foil to useful substrates.

Now researchers at MIT and the University of Michigan have come up with a way of producing graphene, in a process that lends itself to scaling up, by making graphene directly on materials such as large sheets of glass.

The process is described, in a paper published this week in the journal Scientific Reports, by a team of nine researchers led by A. John Hart of MIT. Lead authors of the paper are Dan McNerny, a former MIT postdoc who is now at Michigan, and Viswanath Balakrishnan, a former MIT postdoc who is now at the Indian Institute of Technology.

Currently, most methods of making graphene first grow the material on a film of metal, such as nickel or copper, says Hart, the Mitsui Career Development Associate Professor of Mechanical Engineering.

"To make it useful, you have to get it off the metal and onto a substrate, such as a silicon wafer or a polymer sheet, or something larger like a sheet of glass," he says. "But the process of transferring it has become much more frustrating than the process of growing the graphene itself, and can damage and contaminate the graphene."

The new work, Hart says, still uses a metal film as the template - but instead of making graphene only on top of the metal film, it makes graphene on both the film's top and bottom. The substrate in this case is silicon dioxide, a form of glass, with a film of nickel on top of it.

Using chemical vapor deposition (CVD) to deposit a graphene layer on top of the nickel film, Hart says, yields "not only graphene on top [of the nickel layer], but also on the bottom." The nickel film can then be peeled away, leaving just the graphene on top of the nonmetallic substrate.

This way, there's no need for a separate process to attach the graphene to the intended substrate - whether it's a large plate of glass for a display screen, or a thin, flexible material that could be used as the basis for a lightweight, portable solar cell, for example. "You do the CVD on the substrate, and, using our method, the graphene stays behind on the substrate," Hart says.

In addition to the researchers at Michigan, where Hart previously taught, the work was done in collaboration with a large glass manufacturer, Guardian Industries.

"To meet their manufacturing needs, it must be very scalable," Hart says. The company currently uses a float process, where glass moves along at a speed of several meters per minute in facilities that produce hundreds of tons of glass every day. "We were inspired by the need to develop a scalable manufacturing process that could produce graphene directly on a glass substrate," Hart says.

The work is still in an early stage; Hart cautions that "we still need to improve the uniformity and the quality of the graphene to make it useful." But the potential is great, he suggests: "The ability to produce graphene directly on nonmetal substrates could be used for large-format displays and touch screens, and for 'smart' windows that have integrated devices like heaters and sensors."

Hart adds that the approach could also be used for small-scale applications, such as integrated circuits on silicon wafers, if graphene can be synthesized at lower temperatures than were used in the present study.

"This new process is based on an understanding of graphene growth in concert with the mechanics of the nickel film," he says. "We've shown this mechanism can work. Now it's a matter of improving the attributes needed to produce a high-performance graphene coating."

.


Related Links
Massachusetts Institute of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Lighting the Way to Graphene-based Devices
Berkeley CA (SPX) May 20, 2014
Graphene continues to reign as the next potential superstar material for the electronics industry, a slimmer, stronger and much faster electron conductor than silicon. With no natural energy band-gap, however, graphene's superfast conductance can't be switched off, a serious drawback for transistors and other electronic devices. Various techniques have been deployed to overcome this proble ... read more


CARBON WORLDS
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

CARBON WORLDS
Mars Curiosity rover may have transported Earth bacteria to Mars

NASA Rover Gains Martian Vista From Ridgeline

Opportunity Explores Region of Aluminum Clay Minerals

Mars mineral could be linked to microbes

CARBON WORLDS
Staying alive: Rescue mission for disco-era satellite

Airbus design of European service module for Orion approved by ESA

Swiss Space Systems launch the ZeroG experience

Britain's Longitude Prize back after 300-year absence

CARBON WORLDS
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

CARBON WORLDS
Scientists Seek Answers With Space Station Thyroid Cancer Study

New ISS Expedition Unaffected by Proton Crash

US-Russian Tensions Roiling Outer Space Cooperation

Rounding up the BCATs on the ISS

CARBON WORLDS
Third-stage engine glitch causes Proton-M accident

Russia's Roscosmos plans to launch two more Protons this year

SpaceX Dragon Spacecraft Returns Critical NASA Science from ISS

SpaceX-3 Mission To Return Dragon's Share of Space Station Science

CARBON WORLDS
Starshade Could Help Photograph Distant Planets

Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

CARBON WORLDS
NIST studies why quantum dots suffer from 'fluorescence intermittency'

Eumelanin's secrets

Liquid crystal as lubricant

On quantification of the growth of compressible mixing layer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.