. 24/7 Space News .
ENERGY TECH
A new method to study lithium dendrites could lead to better, safer batteries
by Staff Writers
University Park PA (SPX) Jan 10, 2020

illustration only

Lithium ion batteries often grow needle-like structures between electrodes that can short out the batteries and sometimes cause fires. Now, an international team of researchers has found a way to grow and observe these structures to understand ways to stop or prevent their appearance.

"It is difficult to detect the nucleation of such a whisker and observe its growth because it is tiny," said Sulin Zhang, professor of mechanical engineering, Penn State. "The extremely high reactivity of lithium also makes it very difficult to experimentally examine its existence and measure its properties."

Lithium whiskers and dendrites are needle-like structures only a few hundred nanometers in thickness that can grow from the lithium electrode through either liquid or solid electrolytes toward the positive electrode, shorting out the battery and sometimes causing fire.

The collaborative team from China, Georgia Tech and Penn State successfully grew lithium whiskers inside an environmental transmission electron microscope (ETEM) using a carbon dioxide atmosphere. The reaction of carbon dioxide with lithium forms an oxide layer that helps stabilize the whiskers.

They report their results online this week in Nature Nanotechnology. The paper is "Revealing the growth and stress generation of lithium whiskers by in situ ETEM-AFM."

Innovatively, the team used an atomic force microscope (AFM) tip as a counter electrode and the integrated ETEM-AFM technique allows simultaneous imaging of the whisker growth and measurement of the growth stress. If the growth stress is too high, it would penetrate and fracture the solid electrolyte and allow the whiskers to continue growing and eventually short-circuit the cell.

"Now that we know the limit of the growth stress, we can engineer the solid electrolytes accordingly to prevent it," Zhang said. Lithium metal-based all-solid-state batteries are desirable because of greater safety and higher energy density.

This new technique will be welcomed by the mechanics and electrochemistry communities and be useful in many other applications, Zhang said.

Next up for the team is to look at the dendrite as it forms against a more realistic solid-state electrolyte under TEM to see exactly what happens.

Research paper


Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Power dressing
Thuwal, Saudi Arabia (SPX) Jan 08, 2020
Wearable electronics could be perpetually powered by stretchy, self-mending materials that use body heat to generate electricity. Three carefully curated organic compounds have been combined to develop a prototype thermoelectric material that is both stretchy and self-healing, can generate its own electricity, and is robust enough to withstand the stresses and strains of daily life. Sensors worn on the skin or as implants are an increasingly popular way to gather biological data for personal and m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
'Space unites us': First Iranian-American NASA astronaut reaches for stars

From exoskeletons to education at CES

Second Spaceship in Virgin Galactic's fleet completes major build milestone

Seniors get special attention at consumer tech show

ENERGY TECH
Collaboration on development of next-generation rapid launch space systems

Arianespace's first launch in 2020, using Ariane 5 at the service of Eutelsat and ISRO

First NASA Artemis Rocket Core Stage loaded on Pegasus Barge

NASA prepares Artemis I SLS rocket stage for move to Pegasus Barge

ENERGY TECH
Mars loses water to space during warm, stormy seasons

LZH's MOMA laser ready for the flight to Mars

Martian water could disappear faster than expected

Mars 2020 rover to seek ancient life, prepare human missions

ENERGY TECH
China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

ENERGY TECH
ESA and EDA joint research: advancing into the unknown

SpaceX launches another 60 satellite for Starlink constellation

SpaceX launches third batch of Starlink satellites

China's heaviest satellite positioned in geosynchronous orbit

ENERGY TECH
Penn shows giving entire course of radiation treatment in less than a second is feasible

Randomness opens the gates to the land of attophotography

Human-based models to study space radiation and countermeasures

Air Force to cancel Raytheon contract for ground-based radar system

ENERGY TECH
Goldilocks stars are best places to look for life

A new tool for 'weighing' unseen planets

SDSU astronomers pinpoint two new 'Tatooine' planetary systems

New technique may give Webb Telescope new way to identify planets with oxygen

ENERGY TECH
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.