. 24/7 Space News .
ENERGY TECH
A more than 100% quantum step toward producing hydrogen fuel
by Staff Writers
Newark NJ (SPX) Apr 27, 2017


File image.

Efforts to reduce our dependence on fossil fuels are advancing on various significant fronts. Such initiatives include research focused on more efficient production of gaseous hydrogen fuel by using solar energy to break water down into its components of hydrogen and oxygen.

Recently, in an article published in the journal Nature Energy, lead author Yong Yan, an assistant professor in the Department of Chemistry and Environmental Science, reported a key breakthrough in the basic science essential for progress toward this goal.

The article, "Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%," reports on the investigative work that Yan carried out along with colleagues affiliated with the National Renewable Energy Laboratory, the Colorado School of Mines and San Diego State University.

Essentially, they created what is known as a quantum dot photoelectrochemical cell that catalytically achieved quantum efficiency for hydrogen gas production exceeding 100% - in the case of their experiments an efficiency approaching 114%.

Quantum dots are extremely small semiconductor particles only a few nanometers in size. (A nanometer is one-billionth of a meter.) In their device, lead sulfide quantum dots replace semiconductor materials such as silicon and copper indium gallium arsenide. The advantage is that such a photoelectrochemical device can, potentially, convert a greater portion of the solar spectrum into useful energy.

The device described is able to absorb one visible solar photon and produce two, or even more, electrons through a process known as multiple exciton generation, or MEG, which are further utilized to reduce water to generate hydrogen gas.

Although many scientists worldwide are engaged in efforts to achieve quantum efficiency as close as possible to 100% for solar hydrogen production, Yan's achievement in directly exceeding this threshold is a significant fundamental breakthrough. It clearly proves that the photoelectrochemical cell design he describes is much more efficient than a quantum dot solar cell with respect to quantum yield.

Yan, who joined the NJIT faculty in 2016, emphasizes that this advance is at the level of basic solar science, and that the breakthrough with respect to quantum yield does not equate to a substantial increase in the ultimate solar-to-hydrogen conversion efficiency.

Nonetheless, this dramatic increase in quantum yield realized with a uniquely innovative lead sulfide quantum dot photoelectrochemical device is an important development in several ways, and as such is a product of Yan's long-standing interest in renewable sources of energy, especially in novel applications of solar energy.

For Yan, the research reported in Nature Energy culminated at NJIT after his previous work as a postdoc at Princeton University and at the U.S. Department of Energy's National Renewable Energy Laboratory in Colorado. The success of this leading-edge effort was made possible with funding provided, in part, by NJIT and the Department of Energy.

Yan says, "These results do present the possibility of generating more energy more efficiently with such a solar-capture device in the future. This could also lead to a fundamental change in the entire process of producing hydrogen fuel. We can now obtain hydrogen fuel from water by using electricity supplied by conventional power plants that consume fossil fuels. But by building on the basic step of achieving such high quantum efficiency for solar hydrogen generation, we could make the process of producing a 'green' fuel much greener as well."

Research paper

ENERGY TECH
New infrared-emitting device could allow energy harvesting from waste heat
Washington DC (SPX) Apr 20, 2017
A new reconfigurable device that emits patterns of thermal infrared light in a fully controllable manner could one day make it possible to collect waste heat at infrared wavelengths and turn it into usable energy. The new technology could be used to improve thermophotovoltaics, a type of solar cell that uses infrared light, or heat, rather than the visible light absorbed by traditional sol ... read more

Related Links
New Jersey Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
12 Scientist-Astronaut Candidates Graduate at Embry-Riddle Through Project PoSSUM

Elon Musk teases future plans at TED

NASA spacesuits over budget, tight on timeline: audit

AGU journal commentaries highlight importance of Earth and space science research

ENERGY TECH
India to launch GSAT-9 communication satellite on May 5: ISRO

SpaceX launches classified payload for NRO; 1st Stage returns to LZ-1

India seeks status as a major space power with more satellite launches

New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

ENERGY TECH
How Old are Martian Gullies

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

SwRI-led team discovers lull in Mars' giant impact history

ENERGY TECH
China to conduct several manned space flights around 2020

China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

ENERGY TECH
ViaSat-2 Satellite to Launch on June 1

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

ESA boosting its Argentine link with deep space

Airbus and Intelsat team up for more capacity

ENERGY TECH
Diamond quantum sensor reveals current flows in next-gen materials

System can 3-D print an entire building

Berkeley Lab scientists discover new atomically layered, thin magnet

Augmented reality increases maintenance reliability at a space station

ENERGY TECH
ISS investigation aims to identify unknown microbes in space

Research Center A Hub For Origins of Life Studies

'Iceball' Planet Discovered Through Microlensing

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

ENERGY TECH
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.