. 24/7 Space News .
TIME AND SPACE
A look into the fourth dimension
by Staff Writers
Zurich, Switzerland (SPX) Jan 23, 2018


A physical phenomenon in four spatial dimensions was realized in two experiments: with light in waveguides (winding tubes) and using cold atoms (orange spheres) in optical lattices. (Picture: ETH Zurich)

Ever since Albert Einstein developed the special theory of relativity in Zurich in 1905, by "fourth dimension" one usually means time. But how can one visualize a fourth spatial dimension - in addition to top-bottom, right-left and front-back?

In the arts Salvador Dali tried that: his crucifixion scene painted in 1954 shows as cross consisting of the three-dimensional unfolding of a hypercube in four dimensions (similarly to the unfolding of a cube into squares).

A completely different, but no less fascinating, look into the fourth spatial dimension was now obtained by two teams of scientists from Switzerland, USA, Germany, Italy and Israel.

The ETH researcher Oded Zilberberg, professor at the Institute for Theoretical Physics, played a pivotal role in both publications, which were recently published in the scientific journal Nature. He provided the theoretical basis for the experiments in which a four-dimensional physical phenomenon could be observed in two dimensions.

The quantum Hall effect

Both experiments dealt with the so-called quantum Hall effect. Commonly, that effect manifests in the boundary layer between two materials, in which electrons can only move in two dimensions. A magnetic field perpendicular to the material initially leads to the classical Hall effect: a current flowing through the material gives rise to a voltage in the perpendicular direction - the larger the magnetic field, the higher the voltage.

The reason for this is that the magnetic field generates a force acting at right angles to the direction of motion (the Lorentz force) that deviates the electrons. At very low temperatures and very large magnetic fields, however, quantum mechanics starts playing a role, which means that the voltage no longer increases continuously, but rather jumps in discrete steps. Three Nobel Prizes in Physics have so far been awarded for experimental and theoretical work on the quantum Hall effect.

A question of topology
The quantum Hall effect can also be understood as a topological phenomenon. Topology describes, for instance, how many "holes" an object has and into what other shapes it can be transformed without cutting it.

Similar laws are responsible in the quantum Hall effect for the electrons' only being able to move along topologically well-defined paths. For particular strengths of the magnetic field, for example, the electric current can only flow along the edges of the material, but not inside it. Around twenty years ago, it was shown mathematically that analogous topological effects should also occur in four spatial dimensions.

"At the time, however, that was more like science fiction", says Oded Zilberberg, "as actually observing something like that in an experiment seemed impossible - after all, physical space only has three dimensions."

Virtual dimensions by topological pumping
But Zilberberg had a clever idea: using so-called topological pumps it should be possible to add a virtual dimension to both of the real dimensions of the quantum Hall effect. A topological pump works by modulating a specific control parameter of the physical system, which causes its quantum state to change in a characteristic way over time.

The end result then looks as though the system had been moving in an additional spatial dimension. In this way one can, theoretically, turn a two-dimensional system into a four-dimensional one.

An optical image of the fourth dimension
That this can also work in practice has now been shown in two independent experiments. A team of physicists led by Mikael Rechtsman at Penn State University and including Kevin Chen's group at the University of Pittsburgh in the USA has realized Oded Zilberberg's idea by burning a two-dimensional array of waveguides into a fifteen-centimetre-long glass block using laser beams.

Those waveguides were not straight, however, but rather meandered through the glass in a snake-like fashion so that the distances between them varied along the glass block. Depending on those distances, light waves moving through the waveguides could jump more or less easily to a neighbouring waveguide.

The varying couplings between the waveguides acted as topological pumps and thus doubled the number of dimensions of the experiment from two to four. The researchers could now literally "see" the expected four-dimensional quantum Hall effect by feeding light into the waveguides at one end of the glass block and recording what came out at the other end with a video camera.

In this way, for instance, the characteristic edge states of the four-dimensional quantum Hall effect, in which light should emerge only from the waveguides at the edge of the lattice, became directly visible.

Four-dimensional quantized transport of cold atoms
Using extremely cold atoms trapped in optical lattices made of crossed laser beams, Immanuel Bloch and his collaborators at the Max-Planck-Institute for Quantum Optics in Munich also realized topological pumps.

In their experiment, the pumping was effected by periodically varying the properties of the split lattice wells in which the atoms were trapped. By measuring the resulting two-dimensional motion of atoms in the lattice they were able to confirm that the atoms, indeed, behaved according to the topology of the quantum Hall effect in four dimensions.

In particular, they were able directly to observe the quantized transport phenomena predicted to occur in that case (which are the equivalent of the voltage perpendicular to the direction of the current in the ordinary two-dimensional quantum Hall effect).

Progress in fundamental research
So what's the practical use of all this? "Right now, those experiments are still far from any useful application", Zilberberg admits. But for fundamental research they represent important progress. Physicists can now investigate not just on paper, but also experimentally the effects that phenomena occurring in four (or even more) dimensions can have in our usual three-dimensional world.

Quasicrystals in metallic alloys are one example. In three spatial dimensions such quasicrystals have no periodic structure, but when one looks at them in higher virtual dimensions, they actually exhibit regular patterns. And, finally, there is string theory, according to which higher spatial dimensions are "compactified" in such a way that, at the end, our normal three-dimensional world emerges.

Research paper

TIME AND SPACE
Quantum noise reduction method for enhanced precision in atomic clocks
Washington DC (SPX) Dec 28, 2017
Noise: it affects us all by distracting us. Noise also occurs at the quantum scale and can e.g. interfere with the measurements of atomic fountain clocks or with quantum information processing. This is because at that scale, there are effects that don't exist at larger scales. As such, finding ways to reduce quantum noise can enhance the precision of measurement in the examples given above ... read more

Related Links
ETH Zurich
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
ASU engineer showcases NASA research for Congress

Columbus: 10 years a lab

Europe brings on charm and blue skies to lure Chinese tourists

Life-saving NASA Communications System Turns 20

TIME AND SPACE
NASA picks up where it left off in 2017, tests RS-25 Flight Controller

Rocket Lab successfully sends rocket into orbit

Aerojet Rocketdyne Supports ULA Launch in Support of National Security

Update from Mojave: VSS Unity successfully completes high speed glide flight

TIME AND SPACE
Crater Neukum named after Mars Express founder

New technique for finding life on Mars

Next Mars Analog mission will help improve efficiency and reduce dust exposure

Deep, buried glaciers spotted on Mars

TIME AND SPACE
China to launch first student satellite for scientific education

Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

TIME AND SPACE
SES-15 Enters Commercial Service to Serve the Americas

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

Aerospace Workforce Training - National Mandate for 2018

TIME AND SPACE
Kilopower: What's Next?

Pulsating dissolution found in crystals

Space Traffic Management

Scientists develop a new material for manipulating molecules

TIME AND SPACE
Hubble finds substellar objects in the Orion Nebula

Viruses are everywhere, maybe even in space

NASA study shows disk patterns can self-generate

Ingredients for life revealed in meteorites that fell to Earth

TIME AND SPACE
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.