. 24/7 Space News .
STELLAR CHEMISTRY
A better way to weigh millions of solitary stars
by Staff Writers
Nashville TN (SPX) Dec 18, 2017


Establishing the mass of a star that possesses a planetary system is a critical factor in determining the mass and size of the planets circling it. An error of 100 percent in the estimate of the mass of a star, which is typical using the photometric method, can result in an error of as much as 67 percent in calculating the mass of its planets. This is roughly equivalent to the difference between a Mercury and an Earth. So, it is extremely important in properly assessing the nature of all the alien worlds that astronomers have begun detecting in recent years.

Astronomers have come up with a new and improved method for measuring the masses of millions of solitary stars, especially those with planetary systems.

Getting accurate measurements of how much stars weigh not only plays a crucial role in understanding how stars are born, evolve and die, but it is also essential in assessing the true nature of the thousands of exoplanets now known to orbit most other stars.

The method is tailor-made for the European Space Agency's Gaia mission, which is in the process of mapping the Milky Way galaxy in three dimensions, and NASA's upcoming Transiting Exoplanet Survey Satellite (TESS), which is scheduled for launch next year and will survey the 200,000 brightest stars in the firmament looking for alien Earths.

"We have developed a novel method for 'weighing' solitary stars," said Stevenson Professor of Physics and Astronomy Keivan Stassun, who directed the development.

"First, we use the total light from the star and its parallax to infer its diameter. Next, we analyze the way in which the light from the star flickers, which provides us with a measure of its surface gravity. Then we combine the two to get the star's total mass."

Traditionally, the most accurate method for determining the mass of distant stars is to measure the orbits of double star systems, called binaries. Newton's laws of motion allow astronomers to calculate the masses of both stars by measuring their orbits with considerable accuracy.

However, fewer than half of the star systems in the galaxy are binaries, and binaries make up only about one-fifth of red dwarf stars that have become prized hunting grounds for exoplanets, so astronomers have come up with a variety of other methods for estimating the masses of solitary stars.

The photometric method that classifies stars by color and brightness is the most general, but it isn't very accurate. Asteroseismology, which measures light fluctuations caused by sound pulses that travel through a star's interior, is highly accurate but only works on several thousand of the closest, brightest stars.

"Our method can measure the mass of a large number of stars with an accuracy of 10 to 25 percent. In most cases, this is far more accurate than is possible with other available methods, and importantly it can be applied to solitary stars so we aren't limited to binaries," Stassun said.

The technique is an extension of an approach that Stassun developed four years ago with graduate student Fabienne Bastien, who is now an assistant professor at Pennsylvania State University. Using special data visualization software developed by a neurodiverse team of Vanderbilt astronomers, Bastien discovered a subtle flicker pattern in starlight that contains valuable information about a star's surface gravity.

Last year, Stassun and his collaborators developed an empirical method for determining the diameter of stars using published star catalog data. It involves combining information on a star's luminosity and temperature with Gaia mission parallax data. (The parallax effect is the apparent displacement of an object caused by a change in the observer's point of view.)

"By putting together these two techniques, we have shown that we can estimate the mass of stars catalogued by NASA's Kepler mission with an accuracy of about 25 percent and we estimate that it will provide an accuracy of about 10 percent for the types of stars that the TESS mission will be targeting," said Stassun.

Establishing the mass of a star that possesses a planetary system is a critical factor in determining the mass and size of the planets circling it. An error of 100 percent in the estimate of the mass of a star, which is typical using the photometric method, can result in an error of as much as 67 percent in calculating the mass of its planets. This is roughly equivalent to the difference between a Mercury and an Earth. So, it is extremely important in properly assessing the nature of all the alien worlds that astronomers have begun detecting in recent years.

Stassun and his colleagues - Enrico Corsaro from INAF-Osservatorio Astrofisico di Catania in Italy, Joshua Pepper from Leigh University and Scott Gaudi from Ohio State University - describe the method and demonstrate its accuracy using 675 stars of known mass in an article titled "Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia" in the January 2018 issue of the Astronomical Journal

STELLAR CHEMISTRY
Discovery of neutron star collision is 'breakthrough' of 2017
Miami (AFP) Dec 21, 2017
The world's first-ever detection of two faraway neutron stars colliding, causing a massive blast that rippled through the fabric of space and time, was judged the scientific breakthrough of 2017, the journal Science said Thursday. The smashup of the two ultra-dense stars observed on August 17 "confirmed several key astrophysical models, revealed a birthplace of many heavy elements, and teste ... read more

Related Links
Vanderbilt University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Orion parachute tests prove out complex system for human deep space missions

McCandless, first astronaut to fly untethered, dies at age 80

NASA picks finalists to explore comet, Saturn's moon

US, Russia have 'limitless' potential to continue space cooperation

STELLAR CHEMISTRY
NASA Conducts Final RS-25 Rocket Engine Test of 2017

One Small Step: Massive Stratolaunch Aircraft Conducts First Taxi Tests

Space Launch System solid rocket booster avionics complete key testing

Japan launches H-IIA carrier rocket with 2 satellites

STELLAR CHEMISTRY
Opportunity takes extensive imagery to decide where to go next

Mars: Not as dry as it seems

Mars' surface water - the truth is out there

Mars Mission Sheds Light on Habitability of Distant Planets

STELLAR CHEMISTRY
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

STELLAR CHEMISTRY
Russia loses contact with Angolan satellite

SpaceX launches 10 more satellites for Iridium

Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

STELLAR CHEMISTRY
Rainbow spider's iridescence could inspire color technology advances

Experiments reveal evidence of exotic new matter state

Pentagon Challenged to Procure a New Satellite in Less Than 12 Years

Better mastery of heat flow leads to next-generation thermal cloaks

STELLAR CHEMISTRY
Discovery of new planet reveals distant solar system to rival our own

Genes in Space-3 successfully identifies unknown microbes in space

Powerful new tool for looking for life beyond Earth

Ancient fossil microorganisms indicate that life in the universe is common

STELLAR CHEMISTRY
Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.