Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















A World Of Possibilities Gives Perspective On Life On Enceladus

Methanogens belong to an ancient group related to bacteria, called the archaea -- thrive without oxygen. Deep volcanic rocks along the Columbia River and in Idaho Falls host two of these ecosystems.
by Chris McKay and Dennis Matson
Houston TX (JSC) Mar 28, 2008
Could microbial life exist inside Enceladus, where no sunlight reaches, photosynthesis is impossible and no oxygen is available? To answer that question, we need look no farther than our own planet to find examples of the types of exotic ecosystems that could make life possible on Saturn's geyser moon. The answer appears to be, yes, it could be possible. It is this tantalizing potential that brings us back to Enceladus for further study.

In recent years, life forms have been found on Earth that thrive in places where the sun doesn't shine and oxygen is not present because no photosynthesis takes place. Microbes have been discovered that survive on the energy from the chemical interaction between different kinds of minerals, and others that live off the energy from the radioactive decay in rocks.

The ecosystems are completely independent of oxygen or organic material produced by photosynthesis at Earth's surface. These extraordinary microbial ecosystems are models for life that might be present inside Enceladus today.

There are three such ecosystems found on Earth that would conceivably be a basis for life on Enceladus. Two are based on methanogens, which belong to an ancient group related to bacteria, called the archaea -- the rugged survivalists of bacteria that thrive in harsh environments without oxygen.

Deep volcanic rocks along the Columbia River and in Idaho Falls host two of these ecosystems, which pull their energy from the chemical interaction of different rocks. The third ecosystem is powered by the energy produced in the radioactive decay in rocks, and was found deep below the surface in a mine in South Africa.

So the evidence points to the feasibility of life in Enceladus. But how would it get its start? A major problem in answering that question is that we don't know how life originated on Earth, nor have we been able to reproduce Earth's first spark of life in the laboratory. But here's the good news: there are a lot of theories for how life originated on Earth. Now the question is -- do they apply to Enceladus?

Two of the theories for the origin of life on Earth do seem to apply to Enceladus--the "primordial soup" theory and the deep sea vent theory.

The Primordial Soup Theory
The theory that the origin of life occurred in a soup of organic material that came together from non-biological sources traces back to Charles Darwin, and was demonstrated in a famous experiment in 1953 when the chemists Stanley L. Miller and Harold C. Urey cooked up a primordial soup of chemicals thought to have been present on early Earth before life began.

A spark, simulating lightning, was passed through this highly reduced mixture of methane, ammonia, water vapor and hydrogen. Within two weeks, a few amino acids, some of the building blocks of life, had formed in the soup. While Miller and Urey did not actually create life, they demonstrated that very complex molecules - amino-acids - could emerge spontaneously from simpler chemicals.

On Earth, it's possible that the organic ingredients of the soup were produced from existing materials on the early Earth. Another theory is that the right soup mix ingredients arrived as incoming comet material and interplanetary dust.

Organic chemicals were part of the raw material from which Enceladus and Saturn's other moons formed. The origin of Enceladus' heat is less clear, but there are several possibilities that could have given Enceladus a layer of liquid water that persists today.

Early on, it could have been heated by decay of short-lived radioactivity in rocks, with the heating prolonged by tidal influences. Or perhaps an earlier oblong orbit could have brought more tidal heating than exists there today. A past tidal relationship with another moon could have caused the heat.

Another theory says the heat could have been produced from a process called serpentization, where chemical binding of water and silicate rock could occur at the upper layer of the moon's core. This increases the volume of the rock and creates energy in the form of heat.

Any of these heating mechanisms might have created a liquid subsurface aquifer solution rich in organics, allowing Enceladus to serve up a suitable prebiotic soup.

The Deep Sea Vent Theory
The deep sea vent theory for the origin of life on Earth might apply to Enceladus as well. In this scenario, life on Earth began at the interface where chemically rich fluids, heated by tidal or other mechanisms, emerge from below the sea floor.

Chemical energy is derived from the reduced gases, such as hydrogen-sulfide and hydrogen coming out from the vent in contact with a suitable oxidant, such as carbon dioxide. Hot spots on an Enceladus sea floor could be locales for this type of process.

We don't know how long it takes for life to start when the ingredients are there and the environment is suitable, but it appears to have happened quickly on Earth. So maybe it was possible that on Enceladus, life started in a "warm little pond" below the icy surface occurring over the last few tens of millions of years.

For life to persist once it has been established requires an environment of liquid water, the essential elements and nutrients, and an energy source.

At Enceladus, we have evidence for liquid water, but we don't know its origin. We have observed simple organic chemicals there, and the March 12 close flyby indicates there are some complex organic chemicals, as well.

An energy source of some sort is producing geysers. As Cassini's exploration continues, we're seeking to bring together more pieces of this intriguing puzzle.

The first step toward answering the question of whether life exists inside the subsurface aquifer of Enceladus is to analyze the organic compounds in the plume.

Cassini's March 12 passage through the plume provided some measurements that help us move toward an answer, and preliminary plans call for Cassini to fly through the plume again for more measurements in the future. Ultimately, another mission in the future could conceivably land near the plume or even return plume material to Earth for laboratory analysis.

Community
Email This Article
Comment On This Article

Related Links
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Life Forms Ejected On Asteroid Impact Could Survive To Reseed Earth
New Rochelle NY (SPX) Feb 28, 2008
In the event that an asteroid or comet would impact Earth and send rock fragments containing embedded microorganisms into space, at least some of those organisms might survive and reseed on Earth or another planetary surface able to support life, according to a study published in the Spring 2008 (Volume 8, Number 1) issue of Astrobiology, a peer-reviewed journal published by Mary Ann Liebert.







  • Odyssey Moon Announces Commercial Launch Services Agreement
  • XCOR Aerospace Suborbital Vehicle To Fly Within Two Years
  • India Seeks Russia's Help In Space Pilot Training
  • NASA discusses space exploration benefits

  • Spirit Begins Preparing For Another Winter Hibernation
  • Mars Robotic Rover Opportunity Finds More Evidence Of Ancient Water
  • Wataire's Water-From-Air Units Get Thumbs Up In Mars Mission Simulation
  • Sturdy Rover Gets No Penalty For Tilting

  • German military satellite launched by Russia: report
  • Russian Rockot Launch Vehicle To Orbit European GOCE Satellite
  • Cape Canaveral Airmen Launch Delta II Rocket
  • Pratt And Whitney Rocketdyne Rocket Engine Powers Latest GPS Satellite Into Space

  • Satellites Can Help Arctic Grazers Survive Killer Winter Storms
  • CrIS Atmospheric Sounder Completes Vibration Testing
  • NASA Goddard Delivers Aquarius Radiometer To JPL
  • Brazil, Germany To Develop Night-Vision Radar Satellite

  • New Horizons Crosses 9 AU
  • ASU Research Solves Solar System Quandary
  • Happy Second Birthday New Horizons
  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt

  • Astronomers Coordinating International Observatories In White-Dwarf Watch
  • Rare Cosmic Rays Are From Far Away
  • Action Replay Of Powerful Stellar Explosion
  • Satellite Detects Record Gamma Ray Burst Explosion Halfway Across Universe

  • NASA Awards Contracts For Design Study Of Lunar Landing Craft
  • New Lunar South Polar Maps From SMART-1
  • NASA prepares for Moonbuggy Race
  • NASA Ames Selected For Return To Moon Team

  • Intelleflex And SATO Partner Around Extended Capability RFID And Data Solutions
  • Drivers Have A New Edge Behind The Wheel With Help From Njection.Com
  • FiberPatrol Is Intrusion Detection Technology Of Choice For Qinghai-Tibet Railway
  • Consumer Telematics Hardware And Services Revenue Will Reach 41 Billion Dollars By 2013

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement