. 24/7 Space News .
A Little Brain Food After Taking Out The Garbage

A brave new human will soon arise

Birth control for brain neurons Nitric Oxide regulates stem cell division in the adult brain; Strategy seen for repairing brain damage caused by neurodegenerative disease and stroke Most neurons in the mammalian brain are produced during embryonic development.

However, several regions of the adult brain continue to spawn large numbers of neurons through the proliferation of neural stem cells. Moreover, it is becoming clear that these new neurons are integrated into existing brain circuitry.

Now, researchers at Cold Spring Harbor Laboratory have discovered that a molecule called nitric oxide (NO) is a pivotal, natural regulator of the birth of new neurons in the adult brain. The study, published in this week's issue of the Proceedings of the National Academy of Sciences, shows that blocking nitric oxide production stimulates neural stem cell proliferation and hence dramatically increases the number of neurons that are generated in the brains of adult rats.

Importantly, the new neurons that arise as a consequence of blocking nitric oxide production display properties of normal neurons, and they appear to contribute directly to the architecture of the adult brain.

The study suggests that modulating nitric oxide levels might be an effective strategy for replacing neurons that are lost from the brain due to stroke or chronic neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's disease.


Dartmouth - Jul 29, 2003
Researchers have discovered a novel class of compounds that affects the cell's garbage disposal system which degrades proteins and opens a window for understanding a vital cell function as well as for treating heart disease and cancer.

The distinctive mechanisms of these compounds are reported in the July 29 issue of Biochemistry and online earlier this month by Dr. Michael Simons, professor of medicine and of pharmacology and toxicology at Dartmouth Medical School and head of cardiology at Dartmouth-Hitchcock Medical Center, with colleagues from Dartmouth and the University of Texas.

Just as cells produce proteins, they must also get rid of those they no longer need. Structures called proteasomes chew up proteins made within the cell -- including viruses and other parasites -- that are targeted for destruction.

Proteasomes are a complex of enzymes with a cylinder core and a lid on the top and bottom. "The proteins come in and are digested like a big garbage can." Simons said. Proteasomes are an attractive target for drug development because manipulating them to prevent or provoke degradation of a particular protein affects most cell activities.

In studying compounds that promote the formation of new blood vessels, (angiogenesis), Simons and his colleagues found these compounds constituted a new class of inhibitor that changes the shape of the proteasome. "This is a completely different class of proteasome inhibitors with unusual mechanisms," Simons said.

Generally, proteasome inhibitors interact with an active site of the protein-digesting enzymes on chains inside the proteasome cylinder. The new-found class, proline/arginine-rich peptides, instead bind to the outside of the proteasome cylinder, triggering it to change shape in a way that limits the proteins they can ingest. The effects appear in all proteasomes, from yeast to humans.

Normal proteasomes look like regular circles; when the researchers add the peptide, the proteasome takes a dumbbell shape. Substances cannot easily get into the proteasome and its activity range is restricted. As a result, it will destroy only a small number of proteins.

"So this is a new mechanism of action, a new class of inhibitors and has interesting therapeutic implications," Simons said.

Since the compounds do not act on the active site of an enzyme, but on its shape, the effects are reversible, meaning that treatment options are controllable. Moreover, there is intriguing therapeutic potential for both heart disease and cancer.

These peptides are especially powerful agents for inducing vessel growth and their angiogenic activity correlates with their ability to interact with certain proteasomes and change their shapes. One result is that they turn off degradation of master switch genes that activate several different angiogenic cascades.

These peptides also prevent degradation of a molecule that normally inhibits activity of nuclear factor kappa B that controls a number of cell processes including growth and inflammation. High levels of the molecule, IkB, impede cell growth, which has implications for use against cancers. Simons speculates that by changing peptide structure, the dual effects of stimulating and stopping growth can be separated.

The findings provide insights into proteasome functions. This peptide appears to regulate how proteasomes interact with the proteins destined for obliteration. Proteasomes are known to change shape when they interact with an inhibitor, but "this is a very unusual shape change; it does not fit any known patterns," Simons added.

Now the researchers are detailing the functions of this naturally occurring immune response peptide . It was originally isolated form pig intestines for use in healing wounds because of its multiple roles as an agent that stimulates vessel growth, inhibits inflammatory responses and kills bacteria.

Coauthors include Mark Post, visiting associate professor of medicine at DMS, as well as M. Maria Gaczynska and Pawel A. Osmulski, of the University of Texas Health Science Center at San Antonio and Youhe Gao of Beijing.

Related Links
Dartmouth Medical School
Cold Spring Harbor Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ESA Helps Sun-Fearing Kids
Paris (ESA) Jul 24, 2003
A better life is in reach for children with a rare genetic disorder that puts their lives at risk when exposed to the Sun. But a new protection suit derived from ESA space technology promises to let them play safely in daylight.







  • Commercial Human Spaceflight Industry Seeks Government Support
  • MirCorp Enters Discussions with Asian Investors;
  • New Snack Food Between Space Walks
  • NASA To Study Man Who Survives On Liquids And Sunlight

  • Mars Moves in for Some Quality Visual Time
  • Los Alamos Releases New Maps Of Mars Water
  • Industry Asked To Design ESA Mars Rover and Payload
  • Mars Rovers Using Air Force Lab Developed Batteries

  • Atlas V Launches Rainbow 1 Satellite
  • Suborbital Legislation Moves In Congress
  • The Space Launch Industry Recent Trends and Near-Term Outlook
  • Suborbital Institute Applauds Space Commercialization Action

  • Learning Opportunities Expand Using GIS Data
  • New Underwater Imaging Vehicle Maps Coral Reefs
  • USA-France Tandem Satellite Mission Serving Up Fresh Sea Fare
  • Argentina's CONAE joins the International Disaster Charter

  • Pluto Mission May Be Early Victim Of Growing Budget Crisis
  • Atlas V Chosen To Launch New Horizons Mission
  • Pluto's Atmosphere Is Expanding
  • Stellar Occultations Reveal Drastic Expansion Of Pluto's Atmosphere

  • Intriguing Celestial Images Arrive From Galaxy Mission
  • Oceanographers Catch First Wave Of Gravity Mission's Success
  • Don't Panic - More Supernovae On The Way
  • Discovery Of Quadruply Lensed Quasar With Einstein Ring

  • Moon's Early History May Have Been Interrupted By Big Burp
  • Memories Of Orange Rock From The Lunar Age
  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material

  • Surrey To Build First Galileo Navigation Test Satellite
  • Boeing Completes GPS IIF Integrated Baseline Review
  • Oskando To Introduce GPS-Based Personal Security Device
  • ESA Welcomes Setting-Up Of Galileo Joint Undertakings

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement