. 24/7 Space News .
STELLAR CHEMISTRY
ALMA finds huge hidden reservoirs of turbulent gas in distant galaxies
by Staff Writers
Munich, Germany (SPX) Aug 31, 2017


This cartoon shows how gas falling into distant starburst galaxies ends up in vast turbulent reservoirs of cool gas extending 30,000 light-years from the central regions. ALMA has been used to detect these turbulent reservoirs of cold gas surrounding similar distant starburst galaxies. By detecting CH+ for the first time in the distant universe, this research opens up a new window of exploration into a critical epoch of star formation. Image courtesy ESO/L. Benassi.

A team led by Edith Falgarone (Ecole Normale Superieure and Observatoire de Paris, France) has used the Atacama Large Millimeter/submillimeter Array to detect signatures of the carbon hydride CH+ in distant starburst galaxies. The group identified strong signals of CH+ in five out of the six galaxies studied, including the Cosmic Eyelash This research provides new information that helps astronomers understand the growth of galaxies and how a galaxy's surroundings fuel star formation.

"CH+ is a special molecule. It needs a lot of energy to form and is very reactive, which means its lifetime is very short and it can't be transported far. CH+ therefore traces how energy flows in the galaxies and their surroundings," said Martin Zwaan, an astronomer at ESO, who contributed to the paper.

How CH+ traces energy can be thought of by analogy to being on a boat in a tropical ocean on a dark, moonless night. When the conditions are right, fluorescent plankton can light up around the boat as it sails. The turbulence caused by the boat sliding through the water excites the plankton to emit light, which reveals the existence of the the turbulent regions in the underlying dark water. Since CH+ forms exclusively in small areas where turbulent motions of gas dissipates, its detection in essence traces energy on a galactic scale.

The observed CH+ reveals dense shock waves, powered by hot, fast galactic winds originating inside the galaxies' star forming regions. These winds flow through a galaxy, and push material out of it, but their turbulent motions are such that part of the material can be re-captured by the gravitational pull of the galaxy itself. This material gathers into huge turbulent reservoirs of cool, low-density gas, extending more than 30 000 light-years from the galaxy's star forming region.

"With CH+, we learn that energy is stored within vast galaxy-sized winds and ends up as turbulent motions in previously unseen reservoirs of cold gas surrounding the galaxy," said Falgarone, who is lead author of the new paper. "Our results challenge the theory of galaxy evolution. By driving turbulence in the reservoirs, these galactic winds extend the starburst phase instead of quenching it."

The team determined that galactic winds alone could not replenish the newly revealed gaseous reservoirs and suggests that the mass is provided by galactic mergers or accretion from hidden streams of gas, as predicted by current theory.

"This discovery represents a major step forward in our understanding of how the inflow of material is regulated around the most intense starburst galaxies in the early Universe," says ESO's Director for Science, Rob Ivison, a co-author on the paper. "It shows what can be achieved when scientists from a variety of disciplines come together to exploit the capabilities of the world's most powerful telescope."

This research was presented in a paper entitled "Large turbulent reservoirs of cold molecular gas around high redshift starburst galaxies" by E. Falgarone et al., to appear in Nature on 30 August 2017.

STELLAR CHEMISTRY
Kepler satellite discovers variability in the Seven Sisters
London, UK (SPX) Aug 28, 2017
The Seven Sisters, as they were known to the ancient Greeks, are now known to modern astronomers as the Pleiades star cluster - a set of stars which are visible to the naked eye and have been studied for thousands of years by cultures all over the world. Now Dr Tim White of the Stellar Astrophysics Centre at Aarhus University and his team of Danish and international astronomers have demonstrated ... read more

Related Links
ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
'Gifted' high-tech takes spotlight at Berlin's IFA fair

NASA Offers Space Station as Catalyst for Discovery in Washington

Forty years on, Voyager still hurtles through space

ISS Orbit Increases Almost 2,000 Feet After Adjustment Maneuver - Control Center

STELLAR CHEMISTRY
Aerospace test at Sandia goes green with alternative to explosives

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Falcon 9 launches from Vandenberg

SpaceX launches Taiwan's first home-built satellite

STELLAR CHEMISTRY
Big dishes band together

New mini tool has massive implications

Opportunity seeks energy-favorable locations to recharge its solar panels during winter

Citizen scientists spot Martian 'spiders' in unexpected places

STELLAR CHEMISTRY
Russia, China May Sign 5-Year Agreement on Joint Space Exploration

China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

ESA and Chinese astronauts train together

STELLAR CHEMISTRY
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

STELLAR CHEMISTRY
Artificial intelligence analyzes gravitational lenses 10 million times faster

Clamping down on causality by probing laser cavities

Rare-metals in the Himalayas: The potential world-class treasure

Why does rubbing a balloon on your hair make it stick?

STELLAR CHEMISTRY
Ultraviolet Light May Be Ultra Important in Search for Life

Hubble delivers first hints of possible water content of TRAPPIST-1 planets

15 Fast Radio Bursts Detected from Distant Universe

A New Search for Extrasolar Planets from the Arecibo Observatory

STELLAR CHEMISTRY
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.