. 24/7 Space News .
Aerogels: 'Solid Smoke' May Have Many Uses

illustration only
Davis - Apr 05, 2004
It looks like glass and feels like solidified smoke, but the most interesting features of the new silica aerogels made by UC Davis and Lawrence Livermore National Laboratory researchers are too small to see or feel. Lighter than styrofoam, this strange material is riddled with pores just nanometers in size, leaving it 98 percent empty.

Water can soak into the material, but in the confined space the water molecules arrange themselves in unusual ways, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis. For example, a lipid membrane can spread across a wet aerogel just as it does around a living cell.

Scientists studying such lipid membranes usually put them on a wafer of silicon or gold. Instead, the aerogel provides a wet cushion for the membrane, allowing it to have moisture on both sides and act more like a real cell in which membranes are studded with proteins. Researchers at Stanford University, led by engineering professor Curtis Frank and Risbud, recently patented the concept.

The invention could be used for investigating diseases such as lupus and rheumatoid arthritis and for biological testing devices.

Aerogels are made by taking a wet gel -- a meshwork of molecules in liquid, such as water -- and removing the water to leave a spongy structure. The first aerogels were made in the 1930s by Samuel Kistler, and the technology was further developed by Lawrence Hrubesh and colleagues at the Lawrence Livermore National Laboratory over 40 years later.

Silica aerogels also have many other applications in fiber optics, insulation against sound or heat, and miniature pumps for built-in refrigeration systems in packaging, Risbud said.

The research project was part of the Center on Polymer Interfaces and Macromolecular Assemblies, a collaboration between Stanford, UC Davis, UC Berkeley and the IBM Almaden Research Center. Risbud also continues to collaborate with Joe Satcher and John Poco of the Lawrence Livermore National Laboratory on silica aerogels.

Related Links
Center on Polymer Interfaces and Macromolecular Assemblies
UC Davis
Lawrence Livermore National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Studying 3-D Materials In 1-D
Montreal - Mar 29, 2004
Research by Young-June Kim, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, may help determine how a class of materials already used in electronic circuits could be used in optical, or light-based, circuits, which could replace standard electrical circuits in telecommunications, computer networking, and other areas of technology.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.