. 24/7 Space News .
Studying 3-D Materials In 1-D

Young-June Kim
Montreal - Mar 29, 2004
Research by Young-June Kim, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, may help determine how a class of materials already used in electronic circuits could be used in optical, or light-based, circuits, which could replace standard electrical circuits in telecommunications, computer networking, and other areas of technology.

Kim's research is focused on "quasi one-dimensional" cuprates, materials that contain copper and oxygen where the atoms are tightly linked together in straight chains with weak lateral bonds -- like a ladder with steel rails and paper rungs. Because the materials' properties are mainly determinedb by the one-dimensional "rails," this structure allows scientists to simplify their analysis by ignoring the weak "rungs."

"One-dimensional systems are special because we already know a lot about their theoretical behavior," said Kim. "Therefore, these theoretical predictions for one dimensional systems can be tested by studying quasi one-dimensional materials."

Kim wants to know how the electrons in these "quasi one-dimensional" cuprates respond to x-rays -- how the electrons behave when they are excited, or energized, by the light. An electron, he said, is like a ball of negative charge surrounded by an electric field, and also like a bar magnet with a tiny magnetic field. Both fields affect nearby electrons, normally at the same time.

However, in Kim's studies, when an electron in a quasi one-dimensional cuprate absorbs x-ray energy, the fields separate, allowing the electric field to "speed up" and exert force on other electrons before the magnetic field can reach them.

"This response is unique to quasi one-dimensional materials," Kim said.

Related Links
Brookhaven National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Polyelectrolyte Inks Create Fine-Scale Structures Through Direct Writing
Champaign IL - Mar 25, 2004
Like spiders spinning webs, researchers at the University of Illinois at Urbana-Champaign are creating complex, three-dimensional structures with micron-size features using a robotic deposition process called direct-write assembly.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.