. 24/7 Space News .
Deep Space 1 Technology Analysis Continues
by Dr Marc Rayman
 Pasadena - November 14, 1999 - Deep Space 1 has spent most of the last three weeks engaged in activities to prepare for its encounters with two comets in 2001. Meanwhile, it has continued coasting in its orbit around the Sun, with its ion propulsion system turned off.

The combination visible camera and imaging spectrometer, known to DS1 enthusiasts as MICAS, collected a wealth of new data to aid scientists and engineers in understanding details of its abilities to take pictures and spectra under a variety of conditions.

Targets with well known properties, including Mars, Jupiter, and selected stars, were viewed so that the instrument's electronically recorded pictures and spectra could be compared with data collected elsewhere. Some of the experiments included viewing a target with a range of exposure times; in others, the target was placed in different locations within the instrument's field of view.

Analysis of the resulting data will aid in selecting exposure times and controlling MICAS' pointing for the comet encounters and will be of great importance in interpreting the images of those unexplored bodies.

Also, while the visible camera has a relatively large field of view, the infrared spectrometer has a very narrow view, so determining exactly how to point it is difficult.

Thus, many snapshots were taken with the infrared detector as the spacecraft made minute changes in where it was pointed. This will allow engineers to determine the optimum way to point it in the future.

Other esoteric data were collected as well, all contributing to a better characterization of MICAS' performance, including the effects of unwanted stray light and the small, but nonetheless larger-than-expected, distortions of its black and white images.

New data were collected with the ultraviolet detector, which has never functioned properly, as part of a continuing effort to see if it can be made operational.

Like all spacecraft, DS1 is not perfectly stable, but rather turns back and forth slowly in the frictionless environment of space. Small thrusters using conventional rocket propellant fire occasionally to keep it pointed in the direction that has been commanded, so it gradually moves until the sensors determine that it is getting to its acceptable limit, and the computer fires a thruster to turn it back.

After a while it drifts to the opposite limit, and again a thruster fires for a fraction of a second to reverse the direction. This motion is normal, and engineers call it deadbanding.

When a long exposure is taken with the camera, the movement of the spacecraft can reduce the picture quality. As a result, it is difficult to image very very faint targets.

So DS1 is testing a new idea. When the ion propulsion system is thrusting, in addition to pushing the spacecraft along, its famously low thrust provides a more gentle control over the spacecraft orientation.

Thus, the spacecraft will turn more slowly, allowing longer pictures to be taken. So a test was conducted in which the ion engine was on for about four hours, during which pictures of faint stars were taken.

PEPE Up In Deep Space
The other instrument that received special attention during the last few weeks is the Plasma Experiment for Planetary Exploration, fondly referred to by most loyal listeners as PEPE.

PEPE measures the energy, composition, and direction of movement of the constituents of plasmas, which are collections of charged particles, both electrons and charged atoms, or ions.

So far, PEPE has operated with its electronic sensors for ion composition set to range from -8000 volts to +8000 volts, but scientists predicted that when it reaches the comets, to achieve greater measurement capability for the composition of complex ions the comets produce, PEPE may need to be boosted to its maximum range of -15,000 volts to +15,000 volts.

On October 25 the power supplies were turned up gradually, reaching 11,000 volts. To be safe, the instrument was turned back down to 10,000 volts until the next week. In the next phase, on November 1, the power supplies were turned up slowly to 13,000 volts, but at 12,750 volts the positive side unexpectedly dropped to +5500 volts.

The data are still being analyzed, but it appears that PEPE may be limited to operate from -8000 volts to +5500 volts for measuring ion composition. This does not affect the measurements of electrons or of the energy and the direction of ions; but it does mean that some of the heavy comet ions may not be measured.

PEPE's data on the solar wind, the stream of charged particles flowing from the Sun, will be unaffected. In addition, PEPE is still well suited to make exciting measurements of the complex structure and behavior of the cometary tail and coma, or the expanding cloud of gas around the comet.

Because of DS1's great distance from Earth, its small antenna can return data at only a very limited rate. So extra tracking from NASA's Deep Space Network, the worldwide system of antennas for communicating with probes in deep space, is needed to return the large volume of special data that is being collected.

Solving Problems Alone In Deep Space
Early in the morning on Thursday, November 11, software onboard Deep Space 1 designed to protect the spacecraft in case of unusual events detected a problem with the spacecraft's star tracker.

The star tracker, imaginatively so named because it tracks stars, helps determine the spacecraft's orientation; this is not one of the 12 advanced technologies whose testing was the focus of DS1's primary mission, but it is a new and sophisticated device.

The protective software turned the power off and then on again, but that did not help. After waiting and repeating its unsuccessful attempts to fix the star tracker, the software placed DS1 in one of its predefined safe configurations known as Sun standby SSA.

In this state, nonessential devices are turned off, the star tracker is not used, and the craft is pointed at the Sun, the only easily recognizable target from its vantage point in the solar system.

The event was discovered by controllers during Friday's scheduled communications session with the Deep Space Network, and now engineers are collecting data from the spacecraft to determine its exact condition.

The star tracker has displayed many unexplained intermittent failures to report its orientation to the spacecraft computer properly since shortly after launch. Indeed, just over two weeks after launch the star tracker's inability to provide data led to software taking nearly the same action (the programmed response has been slightly altered since then).

In all previous cases however, the device resumed normal operation within less than an hour, and usually in less than a minute. This time, the star tracker has not yet resumed functioning correctly.

Since the problems began over a year ago, Deep Space 1 has been working with the manufacturer of the star tracker and with other missions planning to use the same apparatus to try to understand its problems. Various experiments have been conducted with similar units in laboratories, and special data channels were activated on DS1 to gain greater insight into the device's operation.

To date, none of these investigations has revealed the source of the problems. For now, DS1 will be left in Sun standby SSA until all the data on the spacecraft health can be returned and analyzed and controllers can design the next steps.

Deep Space 1 is now 60% farther away from Earth than the Sun is and over 625 times as far as the moon. At this distance of 240 million kilometers, or 149 million miles, radio signals, traveling at the universal limit of the speed of light, take nearly 27 minutes to make the round trip.

  • Deep Space 1 - Main Site
  • Deep Space 1 Artificial Intelligence Test
  • Remote Agent Experiment
  • Deep Space 1: Rocketing to the Future

    DEEP SPACE ONE
    DS1 Cruises By Braille
    Eros marker image may yet be updated Deep Space - July 29, 1999 - Deep Space 1 successfully flew by asteroid 9969 Braille at 9:46pm PDT Wednesday, July 28 using a sophisticated new space autopilot system to come within 15 klicks of the mile wide asteroid. An exultant operations team looked on as preliminary data returned to the Deep Space 1 operations control area at NASA's Jet Propulsion Laboratory, Pasadena, CA, indicating that the AutoNav autopilot system skillfully flew the spacecraft to a face-to-face closeup with asteroid Braille.

  • Views of Vesta
  • Views of Asteroids




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.