Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



How The Early Universe Got Dusty Remains A Mystery

UA astronomers took this image of supernova remnant Cassiopeia A with the Spitzer Space Telescope's Multiband Imaging Photometer (MIPS) in November 2003. UA Professor George Rieke led the team that developed and built the extremely heat-sensitive MIPS. It detects heat from very cold objects by taking images at far-infrared wavelengths. Dean Hines of the MIPS team took this image at far-infrared, 24 micron wavelengths. Photo credit: NASA/JPL/D.Hines, University of Arizona.
by Lori Stiles
Tucson AZ (SPX) Dec 08, 2004
Astronomers who think they know how the very early universe came to have so much interstellar dust need to think again, according to new results from the Spitzer Space Telescope.

In the last few years, observers have discovered huge quantities of interstellar dust near the most distant quasars in the very young universe, only 700 million years after the cosmos was born in the Big Bang.

"And that becomes a big question," said Oliver Krause of the University of Arizona Steward Observatory in Tucson and the Max Planck Institute for Astronomy in Heidelberg. "How could all of this dust have formed so quickly?"

Astronomers know two processes that form the dust, Krause said. One, old sun-like stars near death generate dust. Two, infrared space missions have revealed the dust is produced in supernovae explosions.

"The first process takes several billion years," Krause noted. "Supernovae explosions, by contrast, produce dust in much less time, only about 10 million years."

So when astronomers reported detecting submillimeter emission from massive amounts of cold interstellar dust in the supernova remnant Cassiopeia A last year, some considered the mystery solved.

Type II supernovae like 'Cas A' likely produced the interstellar dust in the very early universe, they concluded. (Type II supernovae come from massive stars that blow apart in huge explosions after their cores collapse.)

Krause and colleagues from UA's Steward Observatory and the Max Planck institute in Heidelberg have now discovered that the detected submillimeter emission comes not from the Cas A remnant itself but from the molecular cloud complex known to exist along the line of sight between Earth and Cas A. They report the work in the Dec. 2 issue of Nature.

Cas A is the youngest known supernova remnant in our Milky Way. It is about 11,000 light years away, behind the Perseus spiral arm clouds that are roughly 9,800 light years away.

Krause suspects that the Perseus clouds explain why late 17th century astronomers didn't report observing the brilliant Cas A outburst around A.D. 1680. Cas A is so close to Earth that the supernova should have been the brightest stellar object in the sky, but dust in the Perseus clouds eclipsed the view.

The Arizona and German team mapped Cas A at 160-micron wavelengths using the ultra-heat-sensitive Multiband Imaging Photometer (MIPS) aboard the Spitzer Space Telescope.

These long wavelengths are the most sensitive to cold interstellar dust emission. They then compared the results with maps of interstellar gas previously made with radio telescopes. They found that the dust in these interstellar clouds account for virtually all the emission at 160 microns from the direction of Cas A.

Minus the emission from this dust, there is no evidence for large amounts of cold dust in Cas A, the team concludes.

"Astronomers will have to go on searching for the source of the dust in the early universe," UA Steward Observatory astronomer and Regents' Professor George Rieke said. Rieke is principal investigator for the Spitzer Space Telescope's MIPS instrument and a co-author of the Nature paper.

"Solving this riddle will show astronomers where and how the first stars formed, or perhaps indicate there is some non-stellar process that can produce large amounts of dust," Rieke said.

"Either way, (finding the source of the dust) will reveal what went on at the formative stage for stars and galaxies, an epoch that is nearly unobserved in any other way."

Authors of the Nature article, "No cold dust within the supernova remnant Cassiopeia A," are Oliver Krause, Stephan M. Birkmann, George H. Rieke, Dietrich Lemke, Ulrich Klaas, Dean C. Hines and Karl D. Gordon.

Related Links
University of Arizona
Spitzer telescope at Caltech
Max Planck Institute for Astronomy
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Taking A Cat Scan Of The Early Universe
Cambridge MA (SPX) Nov 09, 2004
The invention of the CAT scan led to a revolution in medical diagnosis. Where X-rays give only a flat two-dimensional view of the human body, a CAT scan provides a more revealing three-dimensional view. To do this, CAT scans take many virtual "slices" electronically and assemble them into a 3D picture.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.