Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .

Taking A Cat Scan Of The Early Universe

Tomography of the Centre of the Milky Way in Soft X-Rays The subdivision of a ROSAT exposure into different energy ranges allows a kind of tomography of the Milky Way. The uniform diffuse emission, which comes from the vicinity (a few tens of light years) of our Sun, can be seen in the lowest energy range between 0.1 and 0.5 keV. Only a few nearby stars are seen. Above 0.5 keV this veil becomes transparent, and absorption structures come into view. They correspond to the optical dark clouds that split the band of the Milky Way (BII=0) in the middle (top right, bottom left). The distance of these dark clouds is about 500 light years. At energies above 1.5 keV (bottom right) the dark clouds are transparent and allow a view of the centre of the Milky Way 30,000 light years away. Some bright sources reside in its vicinity; but the centre of the Milky Way apparently does not contain any luminous, intense X-ray source.
Cambridge MA (SPX) Nov 09, 2004
The invention of the CAT scan led to a revolution in medical diagnosis. Where X-rays give only a flat two-dimensional view of the human body, a CAT scan provides a more revealing three-dimensional view. To do this, CAT scans take many virtual "slices" electronically and assemble them into a 3D picture.

Now a new technique that resembles CAT scans, known as tomography, is poised to revolutionize the study of the young universe and the end of the cosmic "dark ages."

Reporting in the Nov. 11, 2004, issue of Nature, astrophysicists J. Stuart B. Wyithe (University of Melbourne) and Abraham Loeb (Harvard-Smithsonian Center for Astrophysics) have calculated the size of cosmic structures that will be measured when astronomers effectively take CAT scan-like images of the early universe.

Those measurements will show how the universe evolved over its first billion years of existence.

"Until now, we've been limited to a single snapshot of the universe's childhood-the cosmic microwave background," says Loeb. "This new technique will let us view an entire album full of the universe's baby photos. We can watch the universe grow up and mature."

Slicing Space

The heart of the tomography technique described by Wyithe and Loeb is the study of 21-centimeter-wavelength radiation from neutral hydrogen atoms. In our own galaxy, this radiation has helped astronomers to map the Milky Way's spherical halo.

To map the distant young universe, astronomers must detect 21-cm radiation that has been redshifted: stretched to longer wavelengths (and lower frequencies) by the expansion of space itself.

Redshift is directly correlated to distance. The farther a cloud of hydrogen is from the Earth, the more its radiation is redshifted. Therefore, by looking at a specific frequency, astronomers can photograph a "slice" of the universe at a specific distance.

By stepping through many frequencies, they can photograph many slices and build up a three-dimensional picture of the universe.

"Tomography is a complicated process, which is one reason why it hasn't been done before at very high redshifts," says Wyithe. "But it's also very promising because it's one of the few techniques that will let us study the first billion years of the universe's history."

A Soap Bubble Universe

The first billion years are critical because that is when the first stars began to shine and the first galaxies began to form in compact clusters.

Those stars burned hotly, emitting huge amounts of ultraviolet light that ionized nearby hydrogen atoms, splitting electrons from protons and clearing away the fog of neutral gas that filled the early universe.

Young galaxy clusters soon were surrounded by bubbles of ionized gas much like soap bubbles floating in a tub of water. As more ultraviolet light flooded space, the bubbles grew larger and gradually merged together.

Eventually, about a billion years after the Big Bang, the entire visible universe was ionized.

To study the early universe when the bubbles were small and the gas mostly neutral, astronomers must take slices through space as if slicing a block of swiss cheese.

Loeb says that just as with cheese, "if our slices of the universe are too narrow, we'll keep hitting the same bubbles. The view will never change."

To get truly useful measurements, astronomers must take larger slices that hit different bubbles. Each slice must be wider than the width of a typical bubble.

Wyithe and Loeb calculate that the largest individual bubbles reached sizes of about 30 million light-years across in the early universe (equivalent to more than 200 million light-years in the expanded universe of today).

Those crucial predictions will guide the design of radio instruments to conduct tomographical studies.

Astronomers soon will test Wyithe and Loeb's predictions using an array of antennas tuned to operate at the 100-200 megahertz frequencies of redshifted 21-cm hydrogen.

Mapping the sky at these frequencies is extremely difficult because of manmade interference (TV and FM radio) and the effects of the earth's ionosphere on low-frequency radio waves. However, new low-cost electronics and computer technologies will make extensive mapping possible before the end of the decade.

"Stuart and Avi's calculations are beautiful because once we have built our arrays, the predictions will be straightforward to test as we take our first glimpses of the early universe," says Smithsonian radio astronomer Lincoln Greenhill (CfA).

Greenhill is working to create those first glimpses through a proposal to equip the National Science Foundation's Very Large Array with the necessary receivers and electronics, funded by the Smithsonian.

"With luck, we will create the first images of the shells of hot material around several of the youngest quasars in the universe," says Greenhill.

Wyithe and Loeb's results also will help guide the design and development of next-generation radio observatories being built from the ground up, such as the European LOFAR project and an array proposed by a US-Australian collaboration for construction in the radio-quiet outback of Western Australia.

Related Links
Harvard-Smithsonian Center for Astrophysics
Search SpaceDaily
Subscribe To SpaceDaily Express

Radio Astronomers Remove The Blindfold
Manchester, UK (SPX) Oct 08, 2004
UK radio astronomers at the Jodrell Bank Observatory, working with colleagues from Europe and the USA, have demonstrated a new technique that will revolutionise the way they observe. To create the very best quality images of the sky, they routinely combine data from multiple telescopes from around the world a technique called Very Long Baseline Interferometry (VLBI).

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.