. 24/7 Space News .
Lab On A Chip Get Super-Small, Super-Smart Plumbing

illustration only
Rochester - Nov 15, 2002
If a crime scene yields only a single drop of blood as evidence, how can a forensics lab perform the dozens of necessary tests on it? What if a doctor finds a suspicious bacterium, but a patient can't wait for the days needed to grow a large colony for testing?

University of Rochester researchers are working on a new way to move and distribute microscopic amounts of fluid around a chip, essentially mimicking the work of scientists testing dozens of samples in a laboratory.

The research is in response to a growing demand for "laboratories on a chip," programmable devices that automatically perform the multiple tests on much smaller amounts of material-on site and more efficiently than ever before. Researchers around the world are already working to develop chips that will allow instant glucose monitoring, DNA testing, drug manufacturing, and environmental monitoring.

In order to work, all of these chips need some sort of plumbing system to move liquid. Thomas B. Jones, professor of electrical engineering, and his team have developed a way to use the electrostatic attraction of water to electric fields, called dielectrophoresis, to divide a single drop of water into dozens of incredibly tiny droplets and move them to designated sites on a chip.

The droplets can be mixed with specialized testing chemicals or biological fluids, or positioned for diagnostic tests with lasers or electrical pulses. Essentially, any laboratory test that can be shrunk to fit on a chip will be able to be serviced by the new plumbing system.

"Microchemical analysis is a rapidly advancing field, but while there are ways to test minuscule liquid volumes, no one has yet come up with a practical way to dispense and move these liquid samples around a chip," says Jones.

"We're hoping to change all that. We've been able to take a single drop of water and split it up into as many as 30 droplets of specific sizes, route them around corners, send different droplets to different points on a chip and even mix different drops together."

Other microfluidic schemes use tiny channels and passages machined into substrates, but these are not only hard to make, but the pressure needed to move the fluid inside means that the slightest defect in fabrication could produce leaks. Jones' system uses narrow electrodes etched onto glass-so thin that they're almost invisible to the naked eye.

AC voltage at about 60 kilohertz is applied to the electrodes and the resulting electrical force causes a "finger" to project from the drop. The finger stretches out along the electrode until it reaches the end, sort of a widened cul-de-sac.

When the voltage is then switched off, the surface tension of the water itself pulls about half of the finger of water back toward the initial drop while half is left to form the droplets. This cul-de-sac can be quite a distance away across the chip-close to a centimeter in Jones' laboratory-and the path to it can even take sharp turns with ease.

Mixing different droplets together is as simple as setting the cul-de-sacs of two paths next to each other and then changing the electrical connections so that the droplets are attracted toward each other. To produce multiple droplets from a single finger, Jones widens the wires at certain areas along the path, making the finger bulge in that area and accumulating a droplet when the finger retracts.

In the same way that miniaturization changed computers from room-sized machines to pocket calculators, a similar change is coming to chemistry and the biological sciences.

Familiar laboratory procedures are being automated and scaled down to the size of microchips. Some companies are even looking to such chips to manipulate and investigate individual cells, while others could benefit from a chip's ability to carry out possibly hundreds of tests on a new drug in just minutes. As the field expands, scientists are finding more uses for such micro-labs.

Eventually, other liquids will be able to be manipulated as well. Jones' team did some preliminary work on antifreeze and noted that while it stretched out similar fingers, the fingers always fully retracted to the mother drop. The team is now working on ways to control both water and other liquids with more finesse.

This research has received support from the National Science Foundation, the Japan Society for the Promotion of Science, the National Institutes of Health, the Infotonics Technology Center, and the Center for Future Health at the University of Rochester.

Related Links
University of Rochester
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

How to Print Out The Next-Generation Of Microchips
Gaithersburg - Aug 22, 2002
New methods reported recently by researchers from the Commerce Department's National Institute of Standards and Technology (NIST), the IBM T.J. Watson Research Center and the University of Texas at Austin will aid the semiconductor industry's urgent search for new photosensitive materials needed to print integrated-circuit patterns with features smaller than a hundred nanometers.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.