Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
With Support, Graphene Still A Superior Thermal Conductor
by Staff Writers
Chestnut Hill MA (SPX) Apr 14, 2010


When suspended, graphene has extremely high thermal conductivity of 3,000 to 5,000 watts per meter per Kelvin. But for practical applications, the chicken-wire like graphene lattice would be attached to a substrate. The team found supported graphene still has thermal conductivity as high as 600 watts per meter per Kelvin near room temperature. That far exceeds the thermal conductivities of copper, approximately 250 watts, and silicon, only 10 watts, thin films currently used in electronic devices.

The single-atom thick material graphene maintains its high thermal conductivity when supported by a substrate, a critical step to advancing the material from a laboratory phenomenon to a useful component in a range of nano-electronic devices, researchers report in the April 9 issue of the journal Science.

The team of engineers and theoretical physicists from the University of Texas at Austin, Boston College, and France's Commission for Atomic Energy report the super-thin sheet of carbon atoms - taken from the three-dimensional material graphite - can transfer heat more than twice as efficiently as copper thin films and more than 50 times better than thin films of silicon.

Since its discovery in 2004, graphene has been viewed as a promising new electronic material because it offers superior electron mobility, mechanical strength and thermal conductivity. These characteristics are crucial as electronic devices become smaller and smaller, presenting engineers with a fundamental problem of keeping the devices cool enough to operate efficiently.

The research advances the understanding of graphene as a promising candidate to draw heat away from "hot spots" that form in the tight knit spaces of devices built at the micro and nano scales. From a theoretical standpoint, the team also developed a new view of how heat flows in graphene.

When suspended, graphene has extremely high thermal conductivity of 3,000 to 5,000 watts per meter per Kelvin. But for practical applications, the chicken-wire like graphene lattice would be attached to a substrate. The team found supported graphene still has thermal conductivity as high as 600 watts per meter per Kelvin near room temperature. That far exceeds the thermal conductivities of copper, approximately 250 watts, and silicon, only 10 watts, thin films currently used in electronic devices.

The loss in heat transfer is the result of graphene's interaction with the substrate, which interferes with the vibrational waves of graphene atoms as they bump against the adjacent substrate, according to co-author David Broido, a Boston College Professor of Physics.

The conclusion was drawn with the help of earlier theoretical models about heat transfer within suspended graphene, Broido said. Working with former BC graduate student Lucas Lindsay, now an instructor at Christopher Newport University, and Natalio Mingo of France's Commission for Atomic Energy, Broido re-examined the theoretical model devised to explain the performance of suspended graphene.

"As theorists, we're much more detached from the device or the engineering side. We're more focused on the fundamentals that explain how energy flows through a sheet graphene. We took our existing model for suspended graphene and expanded the theoretical model to describe this interaction that takes place between graphene and the substrate and the influence on the movement of heat through the material and, ultimately, it's thermal conductivity."

In addition to its superior strength, electron mobility and thermal conductivity, graphene is compatible with thin film silicon transistor devices, a crucial characteristic if the material is to be used in low-cost, mass production. Graphene nano-electronic devices have the potential to consume less energy, run cooler and more reliably, and operate faster than the current generation of silicon and copper devices.

Broido, Lindsay and Mingo were part of a research team led by Li Shi, a mechanical engineering professor at the University of Texas at Austin, which also included his UT colleagues Jae Hun Seol, Insun Jo, Arden Moore, Zachary Aitken, Michael Petttes, Xueson Li, Zhen Yao, Rui Huang, and Rodney Ruoff.

.


Related Links
Boston College
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Tokyo adopts carbon-trading scheme
Tokyo (UPI) Apr 8, 2010
Tokyo has launched Asia's first mandatory cap-and-trade scheme in an effort to reduce emissions. The initiative could set a national standard. While Japanese Prime Minister Yukio Hatoyama has been pushing for a nationwide carbon-trading scheme that would help fulfill his campaign pledge to cut emissions by 25 percent from 1990 levels over the next decade, the ruling coalition has ... read more


CARBON WORLDS
NASA Announces Winners Of 17th Annual Great Moonbuggy Race

Autarky In Space

Soviets Used US Lunar Photos To Plan Own Moon Mission

Sandcastles On The Moon

CARBON WORLDS
Helicopter Helps Test Radar For 2012 Mars Landing

Sharp Turn Makes Opportunity For Roving Difficult

San Diego Team Delivers Camera For Next Mars Rover

Silence Has Winter Freezes The Spirit

CARBON WORLDS
Obama to present new vision for US space travel

Muted reaction for Obama's new vision for US space travel

Obama to outline US space plans in NASA visit

NASA chief: Obama vision dynamic, bold

CARBON WORLDS
China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

China To Complete Wenchang Space Center By 2015

China To Conduct Maiden Space Docking In 2011

CARBON WORLDS
Faulty ISS cooling system could force new space walk: NASA

US astronauts end mission's last space walk

Discovery Crew Wraps Up Final ISS EVA

ISS Building Crews Hard At Work During STS-131

CARBON WORLDS
Task Force To Conduct Quality Audit On Ariance Launch Campaign Process

SES-1 Satellite Arrived At Baikonour Launch Base

Ariane 5's Launch With ASTRA 3B and COMSATBw-2 Set For April 9

Brazil To Develop Carrier Rocket By 2014

CARBON WORLDS
Small, Ground-Based Telescope Images Three Exoplanets

Wet Rocky Planets A Dime A Dozen In The Milky Way

First Detailed Look At Young Dusty Discs Around Ageing Stars

Discovery Challenges Planet Formation Theories

CARBON WORLDS
NGC Completes System Development Of B-2 Radar Modernization Program

Design Review Completed For Tactical Recon And Counter-Concealment Enabled Radar

NC State Research May Revolutionize Ceramics Manufacturing

Comms Upgrade For EnviroSat Completed In Antarctica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement