Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Weizmann Institute Scientists observe quantum effects in cold chemistry
by Staff Writers
Tel Aviv, Israel (SPX) Oct 12, 2012


illustration only

At very low temperatures, close to absolute zero, chemical reactions may proceed at a much higher rate than classical chemistry says they should - because in this extreme chill, quantum effects enter the picture.

A Weizmann Institute team has now confirmed this experimentally; their results would not only provide insight into processes in the intriguing quantum world in which particles act as waves, it might explain how chemical reactions occur in the vast frigid regions of interstellar space.

Long-standing predictions are that quantum effects should allow the formation of a transient bond - one that will force colliding atoms and molecules to orbit each other, instead of separating after the collision. Such a state would be very important, as orbiting atoms and molecules could have multiple chances to interact chemically. In this theory, a reaction that would seem to have a very low probability of occurring would proceed very rapidly at certain energies.

Dr. Ed Narevicius and his team in the Institute's Chemical Physics Department managed, for the first time, to experimentally confirm this elusive process in a reaction they performed at chilling temperatures of just a fraction of a degree above the absolute zero - 0.01K. Their results appeared this week in Science.

"The problem," says Narevicius, "is that in classical chemistry, we think of reactions in terms of colliding billiard balls held together by springs on the molecular level.

In the classical picture, reaction barriers block those billiard balls from approaching one another, whereas in the quantum physics world, reaction barriers can be penetrated by particles, as these acquire wave-like qualities at ultra-low temperatures."

The quest to observe quantum effects in chemical reactions started over half a century ago with pioneering experiments by Dudley Herschbach and Yuan T. Lee, who later received a Nobel Prize for their work. They succeeded in observing chemical reactions at unprecedented resolution by colliding two low-temperature, supersonic beams.

However, the collisions took place at relative speeds that were much too high to resolve many quantum effects: When two fast beams collide, the relative velocity sets the collision temperature at above 100K, much too warm for quantum effects to play a significant role.

Over the years, researchers had used various ingenious techniques, including changing the angle of the beams and slowing them down to a near-halt. These managed to bring the temperatures down to around 5K - close, but still a miss for those seeking to observe chemical reactions in quantum conditions.

The innovation that Narevicius and his team, including Alon B. Henson, Sasha Gersten, Yuval Shagam and Julia Narevicius, introduced was to merge the beams rather than collide them. One beam was produced in a straight line, and the second beam was bent using a magnetic device until it was parallel with the first.

Even though the beams were racing at high-speed, the relative speed of the particles in relation to the others was zero. Thus a much lower collision temperature of only 0.01 K could be achieved.

One beam contained helium atoms in an excited state, the other either argon atoms or hydrogen molecules. In the ensuing chemical reaction, the argon or hydrogen molecules became ionized - releasing electrons.

To see if quantum phenomena were in play, the researchers looked at reaction rates - a measure of how fast a reaction proceeds - at different collision energies. At high collision energies, classical effects dominated and the reaction rates slowed down gradually as the temperature dropped.

But below about 3K, the reaction rate in the merged beams suddenly took on peaks and valleys. This is a sign that a quantum phenomenon known as scattering resonances due to tunneling was occurring in the reactions.

At low energies, particles started behaving as waves: Those waves that were able to tunnel through the potential barrier interfered constructively with the reflected waves upon collision. This creates a standing wave that corresponds to particles trapped in orbits around one another. Such interference occurs at particular energies and is marked by a dramatic increase in reaction rates.

Narevicius: "Our experiment is the first proof that the reaction rate can change dramatically in the cold reaction regime. Beyond the surprising results, we have shown that such measurements can serve as an ultrasensitive probe for reaction dynamics. Our observations already prove that our understanding of even the simplest ionization reaction is far from complete; it requires a thorough rethinking and the construction of better theoretical models. We expect that our method will be used to solve many puzzles in reactions that are especially relevant to interstellar chemistry, which generally occurs at ultra-low temperatures."

.


Related Links
Weizmann Institute of Science
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Photonic gels are colorful sensors
Houston TX (SPX) Oct 11, 2012
Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food spoilage or security, multiband optical elements in laser-driven systems and even as part of high-contrast displays. The new work led by Rice materials scientist Ned Thomas combines polymers into a uni ... read more


TECH SPACE
Russian moon mission said funded, ready

Rover designed to drill for moon ice

China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

TECH SPACE
Mars rover makes surprising rock find

Meteorite delivers Martian secrets to University of Alberta researcher

Mars Rock Touched by NASA Curiosity has Surprises

Resume Working with First Scooped Sample

TECH SPACE
Austrian daredevil to make new space jump bid

Austrian daredevil eyes new space jump at weekend

Grants help scientists explore boundary between science and science fiction

Dead stars could be cosmic 'GPS'

TECH SPACE
ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

TECH SPACE
Crew Unloads Dragon, Finds Treats

Station Crew Opens Dragon Hatch

NASA and International Partners Approve Year Long ISS Stay

Year on ISS planned ahead of manned Mars mission

TECH SPACE
India to launch 58 space missions in next 5 years

SpaceX Dragon Successfully Attaches To Space Station

Another Ariane 5 Enters Launch Campaign Queue

SpaceX capsule links up with space station: NASA

TECH SPACE
Nearby Super-Earth Likely a Diamond Planet

Candels Team Discovers Dusty Galaxies At Ancient Epoch With Hubble Space Telescope

Large water reservoirs at the dawn of stellar birth

Comet crystals found in a nearby planetary system

TECH SPACE
Swedish breakthrough in space on NASA satellite with electronics from AAC Microtec

US appeals court lifts ban on Samsung-Google phone

Focus on space debris: Envisat

Weizmann Institute Scientists observe quantum effects in cold chemistry




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement