Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Webb Telescope Unique Structural "Heart" Passes Extreme Tests
by Staff Writers
Greenbelt MD (SPX) Sep 30, 2010


The ISIM structure is unique. When fully integrated, the roughly 2.2-meter (more than 7 feet) ISIM will weigh more than 900 kg (nearly 2000 lbs) and must survive more than six and a half times the force of gravity. The ISIM structure holds all of the instruments needed to perform science with the telescope in very tight alignment.

NASA engineers have created a unique engineering marvel called the ISIM structure that recently survived exposure to extreme cryogenic temperatures, proving that the structure will remain stable when exposed to the harsh environment of space. The material that comprises the structure, as well as the bonding techniques used to join its roughly 900 structural components, were all created from scratch.

The ISIM, or the Integrated Science Instrument Module Flight Structure, will serve as the structural "heart" of the James Webb Space Telescope.

The ISIM is a large bonded composite assembly made of a light weight material that has never been used before to support high precision optics at the extreme cold temperatures of the Webb observatory.

Imagine a place colder than Pluto where rubber behaves like glass and where most gasses are liquid. The place is called a Lagrange point and is nearly one million miles from Earth, where the Webb telescope will orbit. At this point in space, the Webb telescope can observe the whole sky while always remaining in the shadow of its tennis-court-sized sunshield.

Webb's components need to survive temperatures that plunge as low as 27 Kelvin (-411 degrees Fahrenheit), and it is in this environment that the ISIM structure met its design requirements during recent testing.

"It is the first large, bonded composite space flight structure to be exposed to such a severe environment," said Jim Pontius, ISIM lead mechanical engineer at NASA's Goddard Space Flight Center in Greenbelt, Md.

The passage of those tests represent many years of development, design, analysis, fabrication, and testing for managing structural-thermal distortion.

The ISIM structure is unique. When fully integrated, the roughly 2.2-meter (more than 7 feet) ISIM will weigh more than 900 kg (nearly 2000 lbs) and must survive more than six and a half times the force of gravity. The ISIM structure holds all of the instruments needed to perform science with the telescope in very tight alignment. Engineers at NASA Goddard had to create the structure without any previous guidelines. They designed this one-of-a-kind structure made of new composite materials and adhesive bonding technique that they developed after years of research.

The Goddard team of engineers discovered that by combining two composite fiber materials, they could create a carbon fiber/cyanate-ester resin system that would be ideal for fabricating the structure's 75-mm (3-inch) diameter square tubes.

This was confirmed through mathematical computer modeling and rigorous testing. The system combines two currently existing composite materials - T300 and M55J - to create the unique composite laminate.

To assemble the ISIM structure, the team found it could bond the pieces together using a combination of nickel-iron alloy fittings, clips, and specially shaped composite plates joined with a novel adhesive process, smoothly distributing launch loads while holding all instruments in precise locations - a difficult engineering challenge because different materials react differently to changes in temperature.

The metal fittings also are unique. They are as heavy as steel and weak as aluminum, but offer very low expansion characteristics, which allowed the team to bond together the entire structure with a special adhesive system.

"We engineered from small pieces to the big pieces testing all along the way to see if the failure theories were correct. We were looking to see where the design could go wrong," Pontius explained.

"By incorporating all of our lessons learned into the final flight structure, we met the requirements, and test validated our building-block approach."

The Mechanical Systems Division at NASA Goddard performed the 26-day test to specifically test whether the car-sized structure behaved as predicted as it cooled from room temperature to the frigid - very important since the science instruments must maintain a specific location on the structure to receive light gathered by the telescope's 6.5-meter (21.3-feet) primary mirror.

If the contraction and distortion of the structure due to the cold could not be accurately predicted, then the instruments would no longer be in position to gather data about everything from the first luminous glows following the big bang to the formation of star systems capable of supporting life.

The test itself also was a first for NASA Goddard because the technology needed to conduct it exceeded the capabilities then offered at the center.

"The multi-disciplinary (test) effort combined large ground-support equipment specifically designed to support and cool the structure, with a photogrammetry measuring system that can operate in the cryogenic environment," said Eric Johnson, ISIM Structure Manager at NASA Goddard.

Photogrammetry is the science of making precise measurements by means of photography, but doing it in the extreme temperatures specific to the Webb telescope was another obstacle the NASA engineers had to overcome.

Despite repeated cycles of testing, the truss-like assembly designed by Goddard engineers, did not crack. Its thermal contraction and distortion were precisely measured to be 170 microns - the width of a needle - when it reached 27 Kelvin (-411 degrees Fahrenheit), well within the design requirement of 500 microns.

"We certainly wouldn't have been able to realign the instruments on orbit if the structure moved too much," Johnson said. "That's why we needed to make sure we had designed the right structure."

The same testing facility will be used to test other Webb telescope systems, including the telescope backplane, the structure to which the Webb telescope's 18 primary mirror segments will be bolted when the observatory is assembled.

.


Related Links
JWST
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
Goddard Team Obtains The 'Unobtainium' For NASA's Next Space Observatory
Greenbelt MD (SPX) Sep 30, 2010
Imagine building a car chassis without a blueprint or even a list of recommended construction materials. In a sense, that's precisely what a team of engineers at the NASA Goddard Space Flight Center in Greenbelt, Md., did when they designed a one-of-a-kind structure that is one of 9 key new technology systems of the Integrated Science Instrument Module (ISIM). Just as a chassis supports th ... read more


SPACE SCOPES
Magnetic Anomalies Shield The Moon

New Australian footage of Neil Armstrong's moon walk

Watch Out For The Super Harvest Moon

Water on Moon is bad news for China's lunar telescope

SPACE SCOPES
Opportunity's Surroundings After Sol 2363 Drive

Atmosphere Checked, One Mars Year Before A Landing

Martian Moon Phobos May Have Formed by Catastrophic Blast

First Results From Herschel Mars Observations

SPACE SCOPES
NASA budget approved by US Congress

CSF Applauds Historic Vote Setting NASA's New Direction

Research Lays Foundation For Building On The Moon - Or Anywhere Else

Interview With German Astronaut Ernst Messerschmid

SPACE SCOPES
China To Launch Second Lunar Probe

Rocket Carrying China's Second Lunar Probe Almost Ready For Launch

China's Mystery Moon Rocket

China Ready For Another Lunar Encounter

SPACE SCOPES
Expedition 25 Crew At Work, Waiting For Three New Members

Soyuz crew admit to disappointment at delayed landing

Russian spacecraft lands safely after delays

International Partners Discuss ISS Extension And Use

SPACE SCOPES
Vandenberg launches Minotaur IV

LockMart And ATK Athena Launch Vehicles Selected As A NASA Launch Services Provider

Sirius XM-5 Satellite Delivered To Baikonur For October Launch

Emerging Technologies May Fuel Revolutionary Launcher

SPACE SCOPES
First Potentially Habitable Exoplanet Found

This Planet Smells Funny

Scientists looking to spot alien oceans

Deadly Tides Mean Early Exit For Hot Jupiters

SPACE SCOPES
Hylas Gets Green Light For Spaceport Trip

Poll: Children embracing e-books

Northrop Grumman Space Cryocoolers Achieve 100 Years Of On-Orbit Performance

NASA's NPP Climate Satellite Passes Pre-Environmental Review




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement