Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Tiny Flares Responsible For Outsized Heat Of Sun's Atmosphere
by Laura Layton
Greenbelt MD (SPX) Aug 17, 2009


Coronal heating is a dynamic process. The brightness of the observed X-ray and ultraviolet emission is strongly dependent on the density of the coronal plasma. Where there's low density, there isn't much brightness. Where there's high density, there's a lot of brightness. The corona is mostly bright at about 1 million degrees K.

"Why is the sun's corona so darned hot?" asks James Klimchuk, an astrophysicist at the Goddard Space Flight Center's Solar Physics Laboratory in Greenbelt, Md.

The mystery of why temperatures in the solar corona, the sun's outer atmosphere, soar to several million degrees Kelvin (K) -much hotter than temperatures nearer the sun's surface-has puzzled scientists for decades. New observations made with instruments aboard Japan's Hinode satellite reveal the culprit to be nanoflares.

Nanoflares are small, sudden bursts of heat and energy. "They occur within tiny strands that are bundled together to form a magnetic tube called a coronal loop," says Klimchuk. Coronal loops are the fundamental building blocks of the thin, translucent gas known as the sun's corona.

Scientists previously thought steady heating explained the corona's million degree temperatures. The steady heating model indicates that a coronal loop of a given length and temperature should have a specific density. However, observations showed that coronal loops have much higher density than the steady heating model predicts.

Newer models based on nanoflares can explain the observed density. But no direct evidence of the nanoflares existed until now.

Observations from the NASA-funded X-Ray Telescope (XRT) and Extreme-ultraviolet Imaging Spectrometer (EIS) instruments aboard Hinode reveal that ultra-hot plasma is widespread in solar active regions. The XRT measured plasma at 10 million degrees K, and the EIS measured plasma at 5 million degrees K.

"These temperatures can only be produced by impulsive energy bursts,"says Klimchuk, who presented the findings on August 6 at the International Astronomical Union General Assembly meeting in Rio de Janeiro, Brazil.

"Coronal loops are bundles of unresolved strands that are heated by storms of nanoflares."

Coronal heating is a dynamic process. The brightness of the observed X-ray and ultraviolet emission is strongly dependent on the density of the coronal plasma. Where there's low density, there isn't much brightness. Where there's high density, there's a lot of brightness. The corona is mostly bright at about 1 million degrees K.

Klimchuk and colleagues constructed a theoretical model to explain how plasma evolves within these coronal tubes and what causes temperatures to skyrocket. "We simulate a burst of heating and see how the corona responds," says Klimchuk. "Then we make predictions about how much emission we should see from plasma of different temperatures."

Klimchuk surmises that when a nanoflare suddenly releases its energy, the plasma in the low-temperature, low-density strands becomes very hot-around 10 million degrees K-very quickly. The density remains low, however, so the emission, or brightness, remains faint. Heat flows from up in the strand, where it's hot, down to the base of the coronal loop, where it's not as hot.

This heats up the dense plasma at the loop's base. Because it is so dense at the base, the temperature only reaches about 1 million degrees K. This dense plasma expands up into the strand. Thus, a coronal loop is a collection of 5-10 million degree K faint strands and 1 million degree K bright strands.

"What we see is 1 million degree K plasma that has received its energy from the heat flowing down from the superhot plasma," says Klimchuk. "For the first time, we have detected this 10 million degree plasma, which can only be produced by the impulsive energy bursts of nanoflares."

The Hinode observations and the scientists' analysis verify that nanoflares are occurring on the sun and that they explain much and perhaps most coronal heating. The observations also confirm "there is some nanoflare activity everywhere" in the sun's active regions, says Klimchuk.

Nanoflares are responsible for changes in the X-ray and ultraviolet (UV) radiation that happen as an active region evolves. X-ray and UV get absorbed by Earth's upper atmosphere, which heats up and expands. Changes in the upper atmosphere can affect the orbits of satellites and space debris by slowing them down, an effect known as "drag."

It is important to know the changing orbits so that maneuvers can be made to avoid space collisions. The X-ray and UV also affect the propagation of radio signals and thereby adversely affect communication and navigation systems.

The discovery that nanoflares play an important and perhaps dominant role in coronal heating paves the way to understanding how the sun affects Earth, our place in the universe.

.


Related Links
Hinode spacecraft
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Living In A Dying Solar System Part One
Moffett Field CA (SPX) Jul 28, 2009
There is a lot of hysteria on the Internet these days that the ancient Mayan calendar, which ends in 2012, portends the end of the world through a variety of possible astronomical events: rogue comets, supernovae, or even supposed "energy" from the galactic center. The reality is that the Mayans simply tracked astronomical cycles. They were not psychic. This preoccupation with doomsday has ... read more


SOLAR SCIENCE
Moon May Light Man's Future

India Mulls Using Nuclear Energy To Power Chandrayaan II

Orbiting The Moon With Orion

Germany Shoots For The Moon By 2015

SOLAR SCIENCE
Martian Dust Devil With Track And Shadow

Mars Orbiter Shows Angled View Of Martian Crater

Orbiter Safe After Computer Swap

Meteorite Found On Mars Yields Clues About Planet's Past

SOLAR SCIENCE
NASA Completes Assembly Of Ares I-X Test Rocket

Rocket To Launch Inflatable Re-entry Capsule

First NASTAR Suborbital Space Scientist Training Course

TankHab: Living In A Gas Station

SOLAR SCIENCE
Russia launches China communications satellite: report

China Conducts Stringent Tests Of Would-Be Spacemen

Chinese Astronauts Must Be Super Human

China bans bad breath in space: report

SOLAR SCIENCE
Astronomy Question Of The Week: Why Do The Planets Break Ranks?

ESA Astronaut Andre Kuipers To Spend Six Months On The ISS Starting In 2011

Finnish President Receives Phone Call From Space

Name And Logo Unveiled For Christer Fuglesang Mission To The ISS

SOLAR SCIENCE
Bad Weather Remains Main Obstacle To Timely Launch Of KSLV-1

Preparations Continue With The JCSAT-12 And Optus D3 Payloads For Next Ariane 5 Launch

ILS Proton Successfully Launches AsiaSat 5 Satellite

AsiaSat 5 Set For Launch

SOLAR SCIENCE
New Planet Orbits Backwards

Huge New Planet Tells Of Game Of Planetary Billiards

Planet Smash-Up Sends Rock And Lava Flying

'Stunning' images of distant planet sent by Kepler scope

SOLAR SCIENCE
Sony adopting industry standard for e-books

College e-textbooks go to class in iPhones

MEADS Receives Hardware Design Approvals, Enters System-Level CDR

Raytheon Develops World's Largest Infrared Light-Wave Detector




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement