Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
The future of chip manufacturing
by Larry Hardesty, MIT News Office
Boston MD (SPX) Jul 04, 2011


Research Laboratory of Electronics graduate students Vitor Manfrinato and Lin Lee Cheong, with the electron-beam lithography system they used in their experiments. Photo: Melanie Gonick

For 50 years, the transistors on computer chips have been getting smaller, and for 50 years, manufacturers have used the same technique - photolithography - to make their chips. But the very wavelength of visible light limits the size of the transistors that photolithography can produce. If chipmakers are to keep shrinking chip features, they'll probably need to turn to other manufacturing methods.

Researchers have long used a technique called electron-beam (or e-beam) lithography to make prototype chips, but standard e-beam lithography is much slower than photolithography. Increasing its speed generally comes at the expense of resolution: Previously, the smallest chip features that high-speed e-beams could resolve were 25 nanometers across, barely better than the experimental 32-nanometer photolithography systems that several manufacturers have demonstrated.

In a forthcoming issue of the journal Microelectronic Engineering, however, researchers at MIT's Research Laboratory of Electronics (RLE) present a way to get the resolution of high-speed e-beam lithography down to just nine nanometers. Combined with other emerging technologies, it could point the way toward making e-beam lithography practical as a mass-production technique.

The most intuitive way for manufacturers to keep shrinking chip features is to switch to shorter wavelengths of light - what's known in the industry as extreme ultraviolet. But that's easier said than done. "Because the wavelength is so small, the optics [are] all different," says Vitor Manfrinato, an RLE graduate student and first author on the new paper. "So the systems are much more complicated ... [and] the light source is very inefficient."

Dropping the mask
Visible-light, ultraviolet and e-beam lithography all use the same general approach. The materials that compose a chip are deposited in layers. Every time a new layer is laid down, it's covered with a material called a resist. Much like a piece of photographic paper, the resist is exposed - to either light or a beam of electrons - in a carefully prescribed pattern.

The unexposed resist and the material underneath are then etched away, while the exposed resist protects the material it covers. Repeating this process gradually builds up three-dimensional structures on the chip's surface.

The main difference between e-beam lithography and photolithography is the exposure phase. In photolithography, light shines through a patterned stencil called a mask, striking the whole surface of the chip at once. With e-beam lithography, on the other hand, a beam of electrons scans across the surface of the resist, row by row, a more time-consuming operation.

One way to improve the efficiency of e-beam lithography is to use multiple electron beams at once, but there's still the problem of how long a beam has to remain trained on each spot on the surface of the resist. That's the problem the MIT researchers address.

Lowering the dose
The fewer electrons it takes to expose a spot on the resist, the faster the e-beam can move. But lowering the electron count means lowering the energy of the beam, and low-energy electrons tend to "scatter" more than high-energy electrons as they pass through the resist, spreading farther apart the deeper they go. To reduce scattering, e-beam systems generally use high-energy beams, but that requires resists tailored to larger doses of electrons.

Manfrinato, a member of RLE's Quantum Nanostructures and Nanofabrication Group, and group leader Karl Berggren, the Emanuel E. Landsman (1958) Associate Professor of Electrical Engineering and Computer Science - together with professor of electrical engineering Henry Smith, graduate students Lin Lee Cheong and Donald Winston, and visiting student Huigao Duan, all of RLE - used two tricks to improve the resolution of high-speed e-beam lithography.

The first was to use a thinner resist layer, to minimize electron scattering. The second was to use a solution containing ordinary table salt to "develop" the resist, hardening the regions that received slightly more electrons but not those that received slightly less.

Pieter Kruit, a professor of physics at the Delft University of Technology in the Netherlands and co-founder of Mapper, a company that has built lithographic systems with 110 parallel e-beams, says that in addition to being faster, e-beam systems that deliver smaller doses of electrons are much easier to build.

The larger the dose of electrons, the more energy the system consumes, and the more insulation it requires between electrodes. "That takes so much space that it's impossible to build an instrument," Kruit says.

Kruit doubts manufacturers will use exactly the resist that the MIT researchers did in their experiments.

Although the researchers' goal was to find a resist that would respond to small doses of electrons, the one that they settled on is actually "a little bit too sensitive," Kruit says: The amount of electricity that an electrode delivers to a chip surface will vary slightly, he explains, and if the resist is too sensitive to those variations, the width of the chip features will vary, too. "But that is a matter of modifying the resist slightly, and that's what resist companies do all the time," he adds.

.


Related Links
MIT
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Silver pen has the write stuff for flexible electronics
Champaign, IL (SPX) Jun 30, 2011
The pen may have bested the sword long ago, but now it's challenging wires and soldering irons. University of Illinois engineers have developed a silver-inked rollerball pen capable of writing electrical circuits and interconnects on paper, wood and other surfaces. The pen is writing whole new chapters in low-cost, flexible and disposable electronics. Led by Jennifer Lewis, the Hans ... read more


CHIP TECH
Marshall Center's Bassler Leads NASA Robotic Lander Work

NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

CHIP TECH
NASA Research Offers New Prospect Of Water On Mars

New Animation Depicts Next Mars Rover in Action

Islands of Life - Part One

Opportunity Getting Closer to Endeavour Crater

CHIP TECH
Expert's reentry flap endures hot baptism

Charles Bolden National Press Club Address - July 1

Spend your summer in space...at the Science Museum

Sierra Nevada Space Systems Completes Milestones For Commercial Crew Program

CHIP TECH
China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

CHIP TECH
Russia's Progress M-11M readjusts ISS orbit

Training for ISS flight operations

Space junk narrowly misses station

Improving Slumber on the Space Station With Sleep-Long

CHIP TECH
Space X Dragon Spacecraft Returns To Florida

Arianespace Launch Postponed At Least 20 Days

Minotaur Rocket Launch from NASA Wallops Re-Scheduled

Parallel Ariane 5 launch campaigns keep up Arianespace's 2011 mission pace

CHIP TECH
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

CHIP TECH
Ocean floor muddies China's grip on '21st-century gold'

Australian radar 'failing to detect boatpeople'

Recycling: A new source of indispensible 'rare earth' materials

Japan's Ricoh to buy Pentax digital camera brand




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement