Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
The ATLAS3D project: Replacing the handle of Hubble's tuning fork
by Staff Writers
Dwingeloo, Netherlands (SPX) Jun 29, 2011


Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies have been regarded as being two distinct families. The spirals are characterised by the presence of disks of stars and gas in rapid rotation, while the early-types are gas poor and described as spheroid systems, with less rotation and often non-axisymmetric shapes.

A team of 25 astronomers from Europe and Northern America, including ASTRON astronomers Morganti, Oosterloo, and Serra, has shown that many galaxies, which are normally classified as spheroid galaxies according to the 70 year old Hubble classification scheme, are in fact spiral galaxies.

The so-called ATLAS3D team observed a sample of 260 galaxies with the SAURON spectrograph on the 4.2-meter William Herschel Telescope on La Palma, which allowed them to determine the movements of the stars in these carefully selected galaxies. The results are important because it gives astronomers more information about the way galaxies form.

The team proposed a revised scheme in which the vast majority of spheroid galaxies, also known as early-type galaxies, are close relatives of spiral galaxies and for this reason form a parallel sequence to them. The new paradigm highlights a much closer connection between early-type and spiral galaxies than previously thought, and this will need to be considered in future models of how galaxies form.

The above results were presented in three ATLAS3D team papers which will appear this month on the journal Monthly Notices of the Royal Astronomical Society.

Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies have been regarded as being two distinct families. The spirals are characterised by the presence of disks of stars and gas in rapid rotation, while the early-types are gas poor and described as spheroid systems, with less rotation and often non-axisymmetric shapes.

This clear distinction is emphasized in Hubble's tuning-fork diagram, where early-type galaxies lie on the handle of the fork, well separated from spiral galaxies. The separation is physically relevant as it implies a distinct path of formation for the two classes of objects.

A known issue of Hubble's classification, however, is that it mostly relies on optical images, from which it is nearly impossible to recognize thin face-on disks of stars from much rounder edge-on spheroids.

For this reason the fraction of disks-like systems hidden in the early-type category has been a matter of debate for decades. The solution to the problem comes from observations of the stellar kinematics: the stars in a thin disk rotate much faster than those in a rounder spheroid. This implies that the kinematics makes it possible to recognize a disk from a spheroid at any inclination. However it requires complex and time-consuming observations.

The new results were unexpected and reveal a new paradigm for early-type galaxies. For the first time, it was found that the overwhelming majority of the early-type galaxies in the nearby Universe does not consist of roundish spheroidal objects, but instead has disks and mostly resembles spiral galaxies with the gas and dust removed.

Only a tiny fraction of the early-type galaxies - the "slow rotators" - are genuine spheroids. This indicates that Hubble's classic tuning-fork gives a misleading description of galaxy structure.

.


Related Links
ASTRON
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
UA Awarded Millions to Shape Solar Telescope Mirror
Tempe AZ (SPX) Jun 24, 2011
When finished, the 4.2-meter mirror will be the largest telescope mirror ever pointed at the sun. Polished into a highly complex, asymmetric shape, it will be the centerpiece of the Advanced Technology Solar Telescope in Hawaii, allowing researchers to study the sun in unprecedented detail. The University of Arizona's College of Optical Sciences has been awarded a multi-million dollar cont ... read more


SPACE SCOPES
ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

CMU and Astrobotic Technology Complete Structural Assembly of Lunar Lander

Blood Red Moon Predicted

SPACE SCOPES
Opportunity Getting Closer to Endeavour Crater

NASA Mars Rover Arrives in Florida After Cross-Country Flight

Radar for Mars Gets Flight Tests at NASA Dryden

19-Mile Mark See Opportunity For A Solar Panel Clean Up

SPACE SCOPES
Sierra Nevada Space Systems Completes Milestones For Commercial Crew Program

Unfasten your seatbelts aboard the ZERO-G

ESA reentry vehicle on track for flight in 2013

Space shuttle commander Kelly to retire from NASA

SPACE SCOPES
China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

SPACE SCOPES
Space junk narrowly misses station

Improving Slumber on the Space Station With Sleep-Long

ATV-2: re-entry over the south Pacific

Progress M-11M space freighter launched into orbit

SPACE SCOPES
Parallel Ariane 5 launch campaigns keep up Arianespace's 2011 mission pace

Ariane 5 payload integration underway; First Soyuz launchers arrive

Arianespace to launch Astra 5B satellite

Arianespace receives the next Ariane 5 for launch in 2011

SPACE SCOPES
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

SPACE SCOPES
Debris narrowly misses International Space Station

Space debris a growing problem

Scientists a step closer to understanding 'natural antifreeze' molecules

Electron Beam Freeform Fabrication




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement