Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Telescope Sees Pulsar That Winks Back With Gamma-Ray Beams
by Staff Writers
Stanford CA (SPX) Oct 23, 2008


Gamma rays from a spinning neutron star, shining through the remnants of a supernova, have been detected by the Fermi space telescope.

About three times a second, the rotating corpse of a 10,000-year-old star sweeps a beam of gamma rays toward Earth. This object, known as a pulsar, is the first one known to "blink" at Earth only in gamma rays, and was discovered by an orbiting observatory launched in June with significant involvement from researchers at Stanford and the SLAC National Accelerator Laboratory.

"This is the first example of a new class of pulsars that will give us fundamental insights into how stars work," said Stanford astrophysicist Peter Michelson, the principal investigator for the Large Area Telescope (LAT), which is carried aboard NASA's orbiting observatory, the Fermi Gamma-ray Space Telescope.

Researchers at SLAC get the first peek at the celestial data beamed down from LAT before sending it on to an international collaboration of scientists for analysis.

The gamma-ray-only pulsar lies within a supernova remnant known as CTA 1, about 4,600 light-years away from Earth in the constellation Cepheus. Its lighthouse-like beam of gamma rays sweeps across Earth every 316.86 milliseconds and emits 1,000 times the energy of our sun. Details of the discovery appear in the Oct. 16 edition of Science Express.

A pulsar is a rapidly spinning neutron star, the crushed core left behind when a massive star explodes. Astronomers have cataloged nearly 1,800 pulsars. Although most were found through their pulses of radio waves, some of these objects also beam energy in other forms, including visible light, X-rays and gamma rays, each of which occupy their own spot on the electromagnetic spectrum.

Unlike previously discovered pulsars, the source in CTA 1 appears to blink only in gamma-ray energies and offers researchers a new way to study the stars in our universe. Scientists think CTA 1 is only the first of a large population of similar objects. "The LAT provides us with a unique probe of the galaxy's pulsar population, revealing objects we would not otherwise even know exist," said Steve Ritz, NASA's project scientist for the Fermi observatory. He is stationed at NASA's Goddard Space Flight Center in Greenbelt, Md.

The pulsar in CTA 1 is not located at the center of the supernova remnant's expanding gaseous shell. Supernova explosions can be asymmetrical, often imparting a "kick" that sends the neutron star careening through space. Based on the remnant's age and the pulsar's distance from its center, astronomers believe the neutron star is moving at about a million miles per hour.

It is possible that the pulsar is emitting radio waves-thus far unseen-in addition to gamma rays. "The radio beam probably never swings toward Earth, so we never see it. But the wider gamma-ray beam does sweep our way," explained NASA's Alice Harding.

The LAT scans the entire sky every three hours and detects photons with energies ranging from 20 million to more than 300 billion times the energy of visible light. The instrument sees about one gamma ray each minute from CTA 1. That's enough for scientists to piece together the neutron star's pulsing behavior, its rotation period and the rate at which it is slowing down.

A pulsar's beams arise because neutron stars possess intense magnetic fields and rotate rapidly. Charged particles stream outward from the star's magnetic poles at nearly the speed of light to create the gamma-ray beams the telescope sees. Because the beams are powered by the neutron star's rotation, they gradually slow the pulsar's spin. In the case of CTA 1, the rotation period is increasing by about one second every 87,000 years.

This measurement is also vital to understanding the dynamics of the pulsar's behavior and can be used to estimate the pulsar's age. From the slowing period, researchers have determined that the pulsar is actually powering all the activity in the nebula where it resides.

"This observation shows the power of the LAT," Michelson says. "It is so sensitive that we can now discover new types of objects just by observing their gamma-ray emissions."

The list of authors for the article in Science Express demonstrates the collaborative nature of the gamma-ray research. The list contains scientists from 48 research groups in the United States, Italy, France, Sweden, Japan and Germany.

.


Related Links
Stanford
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
The Oddball Hosts Of Gamma-Ray Bursts
Huntsville AL (SPX) Oct 23, 2008
There's a universal tendency to heed Dylan Thomas's exhortation and go out with a bang instead of a whimper. Nowhere is this more evident than deep in the cosmos. When their time is up, stars make their exits in a number of flamboyant ways. The most massive stars leave with the greatest fanfare of all - blasting out gamma-ray bursts (GRBs), tremendous explosions that rock the Universe like ... read more


STELLAR CHEMISTRY
Chandrayaan-1 Launched - Next Stop: The Moon

India launches first moon mission

India Shoots For The Moon In Asian Space Race

NASA Returns To The Moon With Instruments On Indian Spacecraft

STELLAR CHEMISTRY
Phoenix Lander Finishes Soil Delivery To Onboard Labs

Laser could aid search for life on Mars

Europe delays ExoMars mission, again

Phoenix Still Probing Mars For Secrets

STELLAR CHEMISTRY
Simulating Survival In Space

Astrotech Awarded ATK Ares I-X First Stage Processing Contract

British defence ministry releases UFO files

Building A Safer Space Together

STELLAR CHEMISTRY
China To Launch FY-4 Weather Satellite Around 2013

Shenzhou 7 Astronauts In Good Health

Chinese Scientists Start Studying Samples From Shenzhou-7

China Sets Sights On First Space Station

STELLAR CHEMISTRY
Expedition 18 Takes Charge

Expedition 18 Crew Docks With Space Station

Expedition 18 Crew Launches From Baikonur

Space station crew might not be expanded

STELLAR CHEMISTRY
Pratt And Whitney Rocketdyne Boosts Disaster Management Satellite

SES Confirms Three New Arianespace Launches

NASA To Webcast IBEX Spacecraft Launch

New ASTRA 1M Satellite To Be Launched On 31 October

STELLAR CHEMISTRY
Young Earthlike Planets May Glow Brightly Enough To Be Found

Exotic Weather On Distant Worlds

Tides Have Major Impact On Planet Habitability

NASA Supercomputer Shows How Dust Rings Point To Exo-Earths

STELLAR CHEMISTRY
Sarantel Antenna Featured In New Iridium 9555 Satellite Phone

NASA Launches IBEX Mission To Outer Solar System

MSV Awarded Patents For Next-Gen Satellite-Terrestrial Comms Network

Theory Explains Mysterious Nature Of Glass




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement