Subscribe free to our newsletters via your
. 24/7 Space News .




TECTONICS
Technique Measures Heat Transport In The Earth's Crust
By Rachel Shulman
St. Louis MO (SPX) Apr 04, 2009


Anne Hofmeister, WUSTL research professor of earth and planetary sciences in Arts and Sciences, places a rock sample for laser-flash analysis. A technique she has refined provides much more accurate data on heat transport through rocks than conventional methods. Her advance brings scientists closer to a better understanding of the Earth's interior. David Kilper/WUSTL Photo Services

Putting a new spin on an old technique, Anne M. Hofmeister, Ph.D., research professor of earth and planetary sciences in Arts and Sciences at Washington University in St. Louis, has revolutionized scientists' understanding of heat transport in the Earth's crust, the outermost solid shell of our planet.

Temperature is an important driver of many geological processes, including the generation of magmas (molten rocks) in the deepest parts of the Earth's crust, about 30 to 40 kilometers below the surface.

Yet, until recently, temperatures deep inside the Earth's crust were uncertain, mainly because of difficulties associated with measuring thermal conductivity, or how much heat is flowing through the rocks that compose the crust.

In conventional methods of measuring thermal conductivity, measurement errors arise as the temperature of a rock nears its melting point. At such high temperatures, heat is not just transported from atom to atom by vibrations, but also by radiation (light).

Since conventional methods cannot separate heat flow carried by vibrations from that associated with radiation, most measurements of how efficiently rocks transport heat at high temperatures have been overestimated.

Because of this experimental uncertainty, scientists have assumed rock conductivity to be constant throughout the crust in order to make advances in models describing Earth's geological behavior.

Laser-flash analysis
Using an industrial laser that is typically used for steel welding, Hofmeister was able to circumvent the problems that plagued the older methods. Her facility at WUSTL is the first in the world to employ such a laser for geoscience research.

Her technique, laser-flash analysis, provides much more accurate data on heat transport through rocks than conventional methods. In laser-flash analysis, a rock sample is held at a given temperature and then subjected to a laser pulse of heat, allowing Hofmeister to measure the time it takes for the heat to go from one end of the sample to the other.

This measurement of thermal diffusivity, or how fast heat flows through matter, is another way to describe the thermal conductivity of a rock. Since measuring heat transport in the crust itself is impossible, Hofmeister used the laser to measure heat transport in individual rock samples at various temperatures and then averaged across samples to represent the dynamics of the crust.

In collaboration with researchers from the University of Missouri - Columbia, Peter I. Nabelek, Ph.D., professor of geological sciences, and Alan G. Whittington, Ph.D., assistant professor of geological sciences, Hofmeister applied her findings to explain geological phenomena observed in the environment.

The results, published in Nature on March 19, 2009, suggest that rock conductivity is not constant as was previously assumed, but instead varies strongly with temperature. Hofmeister explains, "Our analysis shows that rocks are more efficient at conducting heat at low temperatures than was previously thought and less efficient at high temperatures. The process of moving heat around really depends on the temperature of the rocks."

Hofmeister and her collaborators found that the conductivity of rocks in the lower crust, where the external temperature is very high, is much lower - by as much as 50 percent - than was predicted by conventional methods.

These results also suggest that the lower crust may be much hotter than scientists previously recognized. Since rocks become better insulators and poorer conductors at high temperatures, the lower crust acts like a blanket over the heat-generating mantle, the layer underlying the crust.

Magma machine
The observation that the lower crust is a good thermal insulator has broad implications for scientists' understanding of fundamental geological processes such as magma production.

Hofmeister explains, "The new methods change our understanding of how heat is transported in geological environments. This pertains to where you find magmas, where you cook metamorphic rock, and where lavas form on ocean ridges."

She and her colleagues used the new temperature-dependent data to inform computer models that predict the consequences of burying and heating up rocks during mountain belt formation, as occurs in the present-day Himalayas.

While prior models relied upon extraordinary processes such as high levels of radioactivity to explain melting of the crust in the Himalayas, Hofmeister and her collaborators' work suggests that the thermal properties of the rocks themselves might be sufficient to generate magmas.

In particular, they find that the strain heating, or friction, caused by mountain belt formation can trigger crustal melting. Because the lower crust is such a good thermal insulator, strain heating is much faster, more efficient, and more self-perpetuating than previously recognized.

"The melt is more insulating than the rock," explains Hofmeister, "Once you get rocks melting, the thermal diffusivity goes down, which makes it harder to cool the rocks. They stay hot longer and there's the potential for more melting."

According to Hofmeister, the Himalaya situation described in the study is probably not unique. Because heat transport is such an important driver, many models of Earth's geological behavior will need to be revisited in light of Hofmeister and her collaborators' findings.

These advances bring Hofmeister much closer to accomplishing what she describes as her life-long career objective. "The goal for most of my career has been to determine the temperature inside the earth. It's the time dependence, how long it takes heat to flow through rocks, that is going to tell us how hot the interior is," she says.

According to Hofmeister, understanding the temperature of the Earth's interior is the first step towards understanding the thermal evolution of the earth.

.


Related Links
Washington University in St. Louis
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
Strong earthquake hits Papua New Guinea: USGS
Sydney (AFP) March 25, 2009
A strong 6.0-magnitude earthquake struck Papua New Guinea on Wednesday morning, the US Geological Survey said, but there were no immediate reports of damage or casualties on the ground. The quake hit at 9:28 am (2328 GMT Tuesday) with an epicentre 117 kilometres (73 miles) south-southwest of Rabaul, which sits at the northern tip of the island of New Britain, at a depth of 47 kilometres, the ... read more


TECTONICS
Lunar Gardening - A Greenhouse On The Moon By 2014

NASA Moon Mission Brings Divergent Passions Together

Russia picking moon rocket design

Third Meeting Of ISECG

TECTONICS
Opportunity Brushing and Examining an Outcrop

Spirit Sets Distance Record For Five-Wheel Driving

Bright Soil Churned By Spirit's Sol 1861 Drive

Europe, Russia in Mars mission rehearsal

TECTONICS
Ball Aerospace Wins Ares Flight Computer Contract

Astronauts May Need More Intense Workouts

Flooding delays return of Soyuz spacecraft

Soyuz Spacecraft Return To Earth Postponed Until April 8

TECTONICS
China Able To Send Man To Moon Around 2020

China To Launch 15 To 16 Satellites In 2009

Macao Donates 14 Million Yuan To Mainland Space Program

Scholarships Established For Aerospace Research

TECTONICS
Russia To Launch Another 3 Soyuz Spacecraft To ISS In 2009

Station Crews Proceed With Handover Activities

Expedition 19 Crew Launches From Baikonur

Astronauts complete final space walk

TECTONICS
Russian launcher puts European telecoms satellite in orbit

Herschel And Planck Launch Update

Raytheon Introduces Rapidly Deployable Space Payload Design

Russia Urges North Korea To Show Restraint In Rocket Launch

TECTONICS
Hubble Finds Hidden Exoplanet In Archival Data

Finding Twin Earths Is Harder Than We Thought

Starlight, Star Bright

Keck Teaming Up With Kepler To Find Other Earths

TECTONICS
Key findings From The Fifth European Conference On Space Debris

Space debris: Europe to set up monitor in 'two or three years'

World's largest laser built in California

Northrop Grumman-Built Cryocooler Operational On Ibuki




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement