|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers New York NY (SPX) Jul 09, 2015
Today theoretical physicists are facing the difficulty that General Relativity is not (pertubatively) renormalizable, and find that it is very hard to construct the quantum theory of gravity with LI. A possible solution is to break the LI in the ultraviolet (UV) region, so that the theory is renormalizable and unitary. However, the invariance should be recovered in the infrared (IR), so that all of the gravitational experiments in the IR can be satisfied. According to this idea, Horava proposed a Horava-Lifshitz (HL) gravity without LI [P. Horava, Phys. Rev. D 79 (2009) 084008], and recently it was shown that LI can be broken at very high energy scale [K. Lin, S. Mukohyama, A. Wang and T. Zhu, Phys. Rev. D 89 (2014) 084022], without causing conflict with observations [M. Pospelov and C. Tamarit, J. High Energy Phys. 01 (2014) 048]. Therefore, it would be very interesting to study effects due to the broken LI, and we find that it is possible to realize the holographic superconductor in HL gravity. This work was a generalization of the AdS/CFT correspondence proposed by Hartnoll, Herzog and Horowitz [S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, Phys.Rev.Lett. 101 (2008) 031601]. They used AdS/CFT correspondence to explain the phase change in black hole spacetime, and successfully obtained the holographic superconductor curve lines of a black hole. After considering the holographic superconductor in the Horava-Lifshitz gravity, we found the effect from the broken LI, which can influence the conductivity and condensate curve lines, but the holographic superconductor still can be realized in gravity without LI. The authors of this paper are Kai Lin (Universidade de Sao Paulo), E. Abdalla (Universidade de Sao Paulo), and Anzhong Wang (Baylor University). The paper can be found in the International Journal of Modern Physics D.
Related Links World Scientific Powering The World in the 21st Century at Energy-Daily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |