Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Study suggests second life for possible spintronic materials
by Staff Writers
Athens OH (SPX) Jun 07, 2013


This image shows a 3-D rendering of a stable manganese gallium nitride surface structure. Credit: A.R. Smith, Ohio University.

Ten years ago, scientists were convinced that a combination of manganese and gallium nitride could be a key material to create spintronics, the next generation of electronic devices that operate on properties found at the nanoscale. But researchers grew discouraged when experiments indicated that the two materials were as harmonious as oil and water.

A new study led by Ohio University physicists suggests that scientists should take another look at this materials duo, which once was heralded for its potential to be the building block for devices that can function at or above room temperature.

"We've found a way-at least on the surface of the material-of incorporating a uniform layer," said Arthur Smith, a professor of physics and astronomy at Ohio University who leads the international collaboration of Argentinian and Spanish researchers.

The scientists made two important changes to create the material merger, they report in the journal Physical Review B. First, they used the nitrogen polarity of gallium nitride, whereas conventional experiments used the gallium polarity to attach to the manganese, Smith explained. Second, they heated the sample.

At lower temperatures (less than 105 degrees Celsius), the manganese atoms "float" on the outer layer of gallium atoms. When the scientists raised the temperature about 100 degrees Celsius, Smith said, the atoms connected to the nitrogen layer underneath, creating a manganese-nitrogen bond. This bond remains stable, even at very high temperatures.

The theoretical scientists accurately predicted that a "triplet" structure of three manganese atoms would form a metastable structure at low temperatures, Smith said. But at higher temperatures, those manganese atoms break apart and bond with nitrogen. Valeria Ferrari of the Centro Atomico Constituyentes said her group performed quantum mechanical simulations to test which model structures have the lowest energy, which suggested both the trimer structure and the manganese-nitrogen bonded structure.

Now that scientists have shown that they can create a stable structure with these materials, they will investigate whether it has the magnetic properties at room temperature necessary to function as a spintronic material.

The study authors are Abhijit Chinchore, Kangkang Wang, Meng Shi, Andrada Mandru, Yinghao Liu, Muhammad Haider and Arthur Smith of the Nanoscale and Quantum Phenomena Institute at Ohio University; Valeria Ferrari and Maria Andrea Barral of the Centro Atomico Constituyentes, GIyA, CNEA, San Martin, Buenos Aires, Argentina; and Pablo Ordejon, Centre d'Investigacio en Nanociencia i Nanotecnologia, Barcelona, Spain.

.


Related Links
Ohio University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Mighty Micropumps: Small but Powerful Vacuum Pumps Demonstrated
Washington DC (SPX) Jun 07, 2013
DARPA-funded researchers recently demonstrated the world's smallest vacuum pumps. This breakthrough technology may create new national security applications for electronics and sensors that require a vacuum: highly sensitive gas analyzers that can detect chemical or biological attack, extremely accurate laser-cooled chip-scale atomic clocks and microscale vacuum tubes. In 2008, DARPA's Chi ... read more


CHIP TECH
NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

CHIP TECH
SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

First woman in space ready for 'one-way flight to Mars'

Aging Mars rover makes new water discoveries

Driving to 'Solander Point'

CHIP TECH
Peanut butter, pyjamas, parmesan launched into space

White House moves to curb 'patent trolls'

A certain level of stress is necessary

Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

CHIP TECH
Crew Shuffles for Shenzhou 10

Shenzhou 10's Missing Parts

Shenzhou's Code of Silence

Shenzhou-10 spacecraft to be launched in mid-June

CHIP TECH
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

CHIP TECH
Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

The Future of Space Launch

Rocket Engine Maker Proton-PM to Invest in New Products

CHIP TECH
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

CHIP TECH
A path to compact, robust sources for ultrashort laser pulses

Dutch duo peddle old bikes as fashion, furniture

To improve today's concrete, do as the Romans did

Magnetic monopoles erase data




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement