|
. | . |
|
by Staff Writers Dubendorf, Switzerland (SPX) Nov 15, 2015
Researchers from the Paul Scherrer Institute (PSI) teamed up with colleagues from the Swiss Materials Science Lab Empa to study a degenerative sign of ageing in concrete: the so-called alkali-aggregate reaction (AAR). In the course of AAR, a material forms that takes up more space than the original concrete and thus gradually cracks the concrete from within as the decades go by. The researchers have now explored the exact structure of this material. They managed to demonstrate that its atoms are arranged extremely regularly, making it a crystal. They also showed that the structure of this crystal is a so-called sheet-silicate structure. This specific structure had never been observed before. The researchers made their discovery thanks to measurements at the Swiss Light Source SLS at PSI. The research results could help towards the development of more durable concrete in future.
A global problem The second main ingredient in concrete is sand and gravel, which in turn are composed of minerals, such as quartz or feldspar. Chemically speaking, these minerals are so-called silicates. The alkaline water reacts with these silicates and forms a so-called alkali calcium silicate hydrate. This is itself able to absorb more moisture, which causes it to expand and gradually crack the concrete from within. This entire process is referred to as AAR. AAR takes place extremely slowly, so that the cracks are initially only tiny and invisible to the naked eye. Over the course of three or four decades, however, the cracks widen significantly and eventually jeopardise the durability of the entire concrete structure.
A new crystal They studied the substance of a Swiss bridge constructed in 1969, which has been affected heavily by AAR. Researchers from Empa cut out a material sample from the bridge and ground down a small piece of it until they were left with a wafer-thin sample that was merely 0.02 millimetres thick. The sample was then taken to the Swiss Light Source SLS and irradiated with an extremely narrow x-ray beam, fifty times thinner than a human hair. Performing so-called diffraction measurements and a complex data analysis, the PSI researchers were eventually able to determine the crystal structure of the material with pinpoint precision. They found that the alkali calcium silicate hydrate has a previously undocumented sheet-silicate crystal structure. "Normally, discovering an uncatalogued crystal structure means you get to name it," explains Rainer Dahn, the first author of the study. "But it has to be a crystal found in nature, therefore we didn't get that honour," says the researcher with a smile. Andreas Leemann, Head of the Concrete Technology Group at Empa, had the idea for the current study. The researchers from PSI then brought their knowledge of the x-ray beam method to the table. "In principle, it's possible to add organic materials to the concrete that are able to reduce the build-up of tension," explains materials scientist Leemann. "Our new results provide a scientific basis for these considerations and could pave the way for the development of new materials."
Related Links Swiss Federal Laboratories for Materials Science and Technology (EMPA) Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |