Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Splitsville for Boron Nitride Nanotubes
by Staff Writers
Berkeley CA (SPX) Jun 30, 2011


Alex Zettl holds joint appointments with Berkeley Lab and UC Berkeley where he directs the Center of Integrated Nanomechanical Systems.

For Hollywood celebrities, the term "splitsville" usually means "check your prenup." For scientists wanting to mass-produce high quality nanoribbons from boron nitride nanotubes, "splitsville" could mean "happily ever after."

Scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, working with scientists at Rice University, have developed a technique in which boron nitride nanotubes are stuffed with atoms of potassium until the tubes split open along a longitudinal seam. This creates defect-free boron nitride nanoribbons of uniform lengths and thickness.

Boron nitride nanoribbons are projected to display a variety of intriguing magnetic and electronic properties that hold enormous potential for future devices.

Nanoribbons are two-dimensional single crystals (meaning only a single atom in thickness) that can measure multiple microns in length, but only a few hundred or less nanometers in width. Graphene nanoribbons, which are made from pure carbon, carry electrons at much faster speeds than silicon, and can be used to cover wide areas and a broad assortment of shapes.

Boron nitride nanoribbons offer similar advantages plus an additional array of electronic, optical and magnetic properties.

"There has been a significant amount of theoretical work indicating that, depending on the ribbon edges, boron nitride nanoribbons may exhibit ferromagnetism or anti-ferromagnetism, as well as spin-polarized transport which is either metallic or semi-conducting," says physicist Alex Zettl, one of the world's foremost researchers into nanoscale systems and devices who holds joint appointments with Berkeley Lab's Materials Sciences Division (MSD) and the Physics Department at UC Berkeley, where he is the director of the Center of Integrated Nanomechanical Systems (COINS).

"The unique properties of boron nitride nanoribbons are of great fundamental scientific interest and also have implications for applications in technologies that include spintronics and optoelectronics," Zettl says. "However, the facile, scalable synthesis of high quality boron nitride nanoribbons has been a significant challenge."

Zettl and members of his research group met this challenge using the chemical process known as "intercalation," whereby atoms or molecules of one type are inserted between atoms and molecules of another type. James Tour at Rice University and his research group had demonstrated that the intercalation of potassium atoms into carbon nanotubes promotes a longitudinal splitting of the tubes.

This prompted Zettl and Tour to collaborate on a study that used the same approach on boron nitride nanotubes, which are very similar in structure to nanotubes made from carbon.

"The likely mechanism for the splitting of both carbon and boron nitride nanotubes is that potassium islands grow from an initial starting point of intercalation," Zettl says. "This island growth continues until enough circumferential strain results in a breakage of the chemical bonds of the intercalated nanotube. The potassium then begins bonding to the bare ribbon edge, inducing further splitting."

This synthesis technique yields boron nitride nanoribbons of uniform widths that can be as narrow as 20 nanometers. The ribbons are also at least one micron in length, with minimal defects within the plane or along the edges. Zettl says the high quality of the edges points to the splitting process being orderly rather than random. This orderliness could explain why a high proportion of the boron nitride nanoribbons display the coveted zigzag or armchair-shaped edges, rather than other edge orientations.

Edges are critical determinants of a nanoribbon's properties because the electrons along the edge of one ribbon edge can interact with the electrons along the edge of another ribbon, resulting in the type of energy gap that is crucial for making devices. For example, zigzagged edges in graphene nanoribbons have been shown to be capable of carrying a magnetic current, which makes them candidates for spintronics, the computing technology based on the spin rather than the charge of electrons.

Kris Erickson, who was the lead author on the Nano Letters paper, says that, "Given the significant dependence upon boron nitride nanoribbon edges for imbuing particular electronic and magnetic properties, the high likelihood of synthesizing ribbons with zigzag and armchair edges makes our technique particularly suitable for addressing theoretical predictions and realizing proposed applications."

Erickson also says it should be possible to functionalize the edges of the boron nitride nanoribbons, as these edges are terminated with chemically reactive potassium atoms following synthesis and with reactive hydrogen atoms following exposure to water or ethanol.

Kris Erickson was the lead author of a Nano Letters paper describing a technique for mass producing boron nitride nanoribbons.

"The potassium-terminated edge could easily be replaced with a species other than hydrogen," Erickson says. "Different chemicals could be used for quenching to impart other terminations, and, furthermore, hydrogen could be replaced after quenching by either utilizing established boron nitride functionalization routes, or by devising new routes unique to the highly reactive nanoribbon edge."

Zettl and his research group are now investigating alternative syntheses using different boron nitride nanotube precursors to increase yields and improve the purification process. They are also attempting to functionalize the edges of their nanoribbons and they are in the process of determining if the various predicted edge states for these nanoribbons can be studied.

"What we really need most right now is a better source of boron nitride nanotubes," Zettl says.

This work was supported by the U.S. Department of Energy's Office of Science, with additional support from the National Science Foundation through the Center of Integrated Nanomechanical Systems (COINS), the Office of Naval Research, and the Air Force Research Laboratory.

Zettl and Tour reported the results of this study in the journal Nano Letters. The paper was titled "Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons." Co-authoring the paper were Kris Erickson, Ashley Gibb, Michael Rousseas and Nasim Alem, who are all members of Zettl's research group, and Alexander Sinitskii, a member of Tour's research group.

.


Related Links
Alex Zettl research group
James Tour research group
Berkeley Lab
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nanowire-based sensors offer improved detection of volatile organic compounds
Washington DC (SPX) Jun 29, 2011
A team of researchers from the National Institute of Standards and Technology (NIST), George Mason University and the University of Maryland has made nano-sized sensors that detect volatile organic compounds-harmful pollutants released from paints, cleaners, pesticides and other products-that offer several advantages over today's commercial gas sensors, including low-power room-temperature opera ... read more


NANO TECH
NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

CMU and Astrobotic Technology Complete Structural Assembly of Lunar Lander

NANO TECH
New Animation Depicts Next Mars Rover in Action

Islands of Life - Part One

Opportunity Getting Closer to Endeavour Crater

NASA Mars Rover Arrives in Florida After Cross-Country Flight

NANO TECH
Charles Bolden National Press Club Address - July 1

Spend your summer in space...at the Science Museum

Sierra Nevada Space Systems Completes Milestones For Commercial Crew Program

Unfasten your seatbelts aboard the ZERO-G

NANO TECH
China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

NANO TECH
Training for ISS flight operations

Space junk narrowly misses station

Improving Slumber on the Space Station With Sleep-Long

ATV-2: re-entry over the south Pacific

NANO TECH
Minotaur Rocket Launch from NASA Wallops Re-Scheduled

Parallel Ariane 5 launch campaigns keep up Arianespace's 2011 mission pace

Ariane 5 payload integration underway; First Soyuz launchers arrive

Arianespace to launch Astra 5B satellite

NANO TECH
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

NANO TECH
Australian rare earth plant must obey IAEA: Malaysia

The Highest Magnetic Fields Are Created in Dresden

China's army develops online war game: report

Study: Rare earth elements can be recycled




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement