Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
Sparse microwave imaging: A new concept in microwave imaging technology
by Staff Writers
Beijing, China (SPX) Aug 14, 2012


These are examples of sparse and non-sparse scenes: (a) Example of an obviously sparse scene; (b) example of a non-sparse scene. Credit: Science China Press.

Sparse microwave imaging is a novel concept in microwave imaging that is intended to deal with the problems of increasing microwave imaging system complexity caused by the requirements of the system applications. Under the support of the 973 program "Study of theory, system and methodology of sparse microwave imaging", Chinese scientists have conducted considerable research into most aspects of sparse microwave imaging, including its fundamental theories, system design, performance evaluation and applications.

Their work, consisting of a series of papers, was published in Science China Information Sciences 2012, vol. 55 (8), as a special issue on sparse microwave imaging. An overview of their work can be found in the paper written by Professor Wu YiRong and his Science and Technology group from the Microwave Imaging Laboratory at the Institute of Electronics of the Chinese Academy of Sciences, entitled "Sparse microwave imaging: Principles and Applications".

Microwave imaging is one of the two major tools of remote sensing, and has been widely used in fields such as agriculture, forestry, oceanic monitoring, topography mapping and military reconnaissance.

The best known modern microwave imaging technology used in remote sensing is synthetic aperture radar (SAR), which transmits an electromagnetic wave toward the scene from a platform moving in a straight line, receives the radar echo and produces a high resolution microwave image via signal processing.

Compared with optical sensing, microwave imaging has the ability to provide all-weather round-the-clock observation, and can be applied to deal with some special sensing requirements, including moving target detection and digital elevation model extraction.

As microwave imaging technology has been used in increasing numbers of fields, the users have of course raised demands for numerous new requirements for their microwave imaging systems. Among them, high resolution and a wide mapping swath are the basic requirements for modern microwave imaging systems. High resolution means that more details can be observed, and the wide mapping swath means larger observation areas.

According to microwave imaging theory - a theory that has not changed for over 60 years following the invention of SAR technology - the signal bandwidth and the system sampling rate determine the achievable resolution and swath of the microwave imaging system.

The only way to improve the signal bandwidth and sampling rate is to increase the system complexity, i.e., to use hardware that is larger, heavier and demands greater power consumption. However, we must eventually reach a limit to the increases in system complexity, and Moore's Law could not hold forever. The concept of sparse microwave imaging was therefore developed.

Sparse microwave imaging introduces sparse signal processing theory to microwave imaging as a replacement for conventional signal processing schemes based on matched filtering. Sparse signal processing was a concept that was developed by mathematicians in the late 1990s, and includes a set of mathematical tools designed to deal with sparse signals - a signal is sparse when most of the elements of the signal are (or are very close to) zero.

Thanks to the extraordinary work known as compressive sensing by D. Donoho, E. Candes and T. Tao over the last decade, sparse signal processing theory, and compressive sensing theory in particular, has become a focal point for research in current signal processing fields. Essentially, sparse signal processing theory asserts that, if a signal is sparse, then it can be measured with far fewer samples than would be required for traditional sampling schemes, and can then be perfectly reconstructed from these few samples via sparse reconstruction algorithms.

If we introduce sparse signal processing theory to microwave imaging, we can then achieve sparse microwave imaging. However, while the concept sounds simple, the combination of sparse signal processing with microwave imaging is in fact quite a complex problem. The difficulties include: the method used to obtain a sparse representation of a scene, determination of the constraints of sparse observation, and efficient and robust reconstruction of the microwave image from the sparse observation data.

Consider, for example, the sparse representation problem. We know that sparse signal processing theory can only deal with sparse signals, but, unfortunately, the observed scenes are usually not sparse. In optical sensing, although an optical picture is not always sparse, it can be expected to have a sparse representation in a transform domain such as the discrete cosine transform (DCT) domain or a wavelet domain. However, we are not so lucky in microwave imaging. To date, no universally applicable transform domain has been found that would enable microwave imaging scenes to have sparse representations. We can only deal with a scene that it is sparse itself.

Another example is the reconstruction algorithm. Mathematicians have developed many sparse reconstruction algorithms with various features, and some of them can feasibly be used in sparse microwave imaging, but one problem remains: calculation efficiency. The size of microwave imaging scenes is always very large, especially in wide mapping swath applications. Experimental results show that the calculation time duration - which can usually be counted in months - is unacceptable when the scene is large. In positive news, some accelerated algorithms have been derived by Chinese scientists.

Sparse microwave imaging theory and technology can be applied in two ways: to design new systems, and to improve existing microwave imaging devices. As a new microwave imaging concept, we can of course design optimized microwave imaging systems using sparse microwave imaging theory for guidance. We can also use the signal processing methods of sparse microwave imaging to improve the imaging performance of the existing microwave devices, e.g. to increase the image distinguishability, reduce the sidelobes and reduce ambiguity. Discussions on both of these topics can be found in the special issue.

Sparse microwave imaging is believed to have the ability to resolve the conflict between growing microwave imaging performance requirements and increasing system complexity. Under this new microwave imaging concept, the system complexity could be reduced remarkably without adversely affecting the imaging performance. Although there are many problems with the technology that need to be solved, sparse microwave imaging can be expected to have a bright future.

Article: Zhang B C, Hong W, Wu Y R. Sparse microwave imaging: Principles and applications. SCIENCE CHINA Information Science, 2012, 55(8): 1722-1754

.


Related Links
Science in China Press
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
NASA Finalizes Contracts for NOAA's JPSS-1 Mission
Greenbelt MD (SPX) Aug 14, 2012
NASA has completed negotiations and finalized the contracts for the spacecraft and instruments that comprise the Joint Polar Satellite System-1 (JPSS-1) Satellite, NOAA's second next generation operational polar-orbiting satellite, planned to launch in 2017. JPSS-1 will follow the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite to maintain continuity of weather and environmental ... read more


EARTH OBSERVATION
NASA's 'Mighty Eagle' Robotic Prototype Lander Flies Again at Marshall

Roscosmos Announces Tender for Moon Rocket Design

US flags still on the moon, except one: NASA

Another Small Step for Mankind

EARTH OBSERVATION
India to launch Mars mission: PM

Mars rover captures crash landing

Obama to NASA experts: 'Let me know if you find Martians'

Opportunity Will Resume Driving Soon

EARTH OBSERVATION
Florida Spaceport Stakes Claim to Commercial Missions

Dutch reality show to offer one-way tickets to Mars

NASA, Louisiana Officials Renew Partnership With National Center For Advanced Manufacturing

New US website lets 'crowd' fund college grad startups

EARTH OBSERVATION
Hong Kong people share joy of China's manned space program

China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

EARTH OBSERVATION
ISS crew to embark on two spacewalks in August

New Way of Turning Station Offers Fuel Savings on Orbit

Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

Russia Launches Space Freighter to Orbital Station

EARTH OBSERVATION
Pre launch verifications are underway for next Soyuz mission

GSAT-10 "spreads its wings" in preparation for Arianespace's next Ariane 5 launch

The Spaceport moves into action for Arianespace's next Soyuz mission to orbit two Galileo satellites

Sea Launch Prepares for the Launch of Intelsat 21

EARTH OBSERVATION
Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

EARTH OBSERVATION
Nano, photonic research gets boost from new 3-D visualization technology

Samsung expands lead in smartphone market: Gartner

Samsung takes on iPad with Galaxy Note tablet

Megaupload boss plans music venture, hints at relaunch




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement