Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Solving 100 Year Old Question Is A Spin Out
by Elizabeth A. Thomson For MIT News
Boston MA (SPX) Sep 30, 2008


MIT Professor Tom Peacock in lab where his group performed experiments on a new approach to unsteady flow separation. Photo / Donna Coveney.

As a car accelerates up and down a hill then slows to follow a hairpin turn, the airflow around it cannot keep up and detaches from the vehicle. This aerodynamic separation creates additional drag that slows the car and forces the engine to work harder. The same phenomenon affects airplanes, boats, submarines, and even your golf ball.

Now, in work that could lead to ways of controlling the effect with potential impacts on fuel efficiency and more, MIT scientists and colleagues have reported new mathematical and experimental work for predicting where that aerodynamic separation will occur.

The research solves "a century-old problem in the field of fluid mechanics," or the study of how fluids -- which for scientists include gases and liquids -- move, said George Haller, a visiting professor in the Department of Mechanical Engineering. Haller's group developed the new theory, while Thomas Peacock, the Atlantic Richfield Career Development Associate Professor in the same department, led the experimental effort.

Papers on the experiments and theory are being published in the Sept. 25 issue of the Journal of Fluid Mechanics and in the September issue of Physics of Fluids, respectively.

Fluid flows affect everything in our world, from blood flow to geophysical convection. As a result, engineers constantly seek ways of controlling separation in those flows to reduce losses and increase efficiency. One recent accomplishment: the sleek, full-body swimsuits used at the Beijing Olympics.

Controlling fluid flows lies at the heart of a wide range of scientific problems, including improving the performance of vehicles, Peacock said.

For example, picture air flowing around, over and past an object. "Instead of flowing smoothly past the object, the air tends to dramatically part from the surface, or separate," said Peacock. Like the wake behind a boat, the water doesn't automatically reconfigure into a single stream. Rather, the region is quite turbulent. "And that adversely affects the lift [or vertical forces] and drag [or horizontal forces] of the object."

In 1904, Ludwig Prandtl derived the exact mathematical conditions for flow separation to occur. But his work had two major restrictions: first, it applied only to steady flows, such as those around a car moving at a constant low speed. Second, it only applied to idealized two-dimensional flows.

"Most engineering systems, however, are unsteady. Conditions are constantly changing," Haller said. "For example, cars accelerate and decelerate, as do planes during maneuvers, takeoff and landing. Furthermore, fluids of technological interest really flow in our three-dimensional world," he added.

As a result, ever since 1904 there have been intense efforts to extend Prandtl's results to real-life problems, i.e., to unsteady three-dimensional flows.

A century later, Haller led a group that did just that. In 2004 Haller published his first paper in the Journal of Fluid Mechanics explaining the mathematics behind unsteady separation in two dimensions. This month, his team reports completing the theory by extending it to three dimensions. Haller's coauthors are Amit Surana, now at United Technologies; MIT student Oliver Grunberg; and Gustaaf Jacobs, now on the faculty at San Diego State University.

Equally important, this month Peacock and colleagues report important experimental work. Said Peacock, "while we fully trust George's new mathematical results, the engineering community is usually skeptical until they also see experimental results." Haller added, "while giving a beautiful validation of the 2D theory, Tom's work also gives strong experimental backing to our new 3D theory."

Coauthors on the experimental work are Haller, Jacobs, Matthew Weldon, now at Penn State; and Moneer Helu, now at the University of California at Berkeley.

The research was initially supported by an internal source, the MIT Ferry Fund. Currently the work is supported by the Air Force Office of Scientific Research and the National Science Foundation.

The researchers said it's too soon to quantify the level of improvement in performance of cars and planes that might stem from the work, noting that more work must be done before it can be applied to commercial technologies. "This is the tip of the iceberg, but we've shown that this theory works," Peacock said.

.


Related Links
MIT
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
CERN says atom-smasher down for two months
Geneva (AFP) Sept 20, 2008
The world's largest particle collider will be down for at least two months following a helium leak into the tunnel, a spokesman for the European Organisation for Nuclear Research (CERN) said Saturday. James Gillies told AFP: "There has been an incident in a test. One section of the machine will have to be repaired." CERN said in a statement that a fault occurred on Friday afternoon ... read more


TIME AND SPACE
A Lunar Dust Up Could Spell Trouble

Company Launches Moon Dust Pens Website

Europe All Set For Lunar Mission Chandrayaan-1

X-Ray Specs Ready To Eye The Moon

TIME AND SPACE
Mars Lander Sees Falling Snow, Soil Data Suggest Liquid Past

MRO Reveals Rock Fracture Plumbing On Mars

The Ancient Rains Of Mars

Mars Rover To Head Toward Bigger Crater

TIME AND SPACE
Successful Re-Entry Marks Bright Future For ATV

Astronaut vs. Earthlings chess game begins

Commercial space ventures ready for lift-off

NASA at 50: still taking science to the limit

TIME AND SPACE
China hails spacewalk 'heroes' and sets eyes on moon

China plans manned trip to moon after successful mission

China astronauts return as heroes after historic spacewalk

China spacewalk fires national pride

TIME AND SPACE
Europe's "space truck" heads for Pacific breakup

Russia's Space Agency Confirms 18th ISS Expedition

The US Has No Option But To Use Russia's Soyuz Craft

Resupply spacecraft docks with International Space Station

TIME AND SPACE
Sea Launch Successfully Delivers Galaxy 19 To Orbit

Sea Launch Countdown Underway For The Galaxy 19 Mission

ArianeSpace Buys 10 Soyuz Rockets For Kourou Spaceport

Telesat Launches Nimiq 4 Broadcast Satellite

TIME AND SPACE
US astronomers discover inter-planetary collision

NASA's Kepler Spacecraft Baked And Ready For More Tests

TNO Star Separators Help ESO With Detection Of Exoplanets

First Picture Of Likely Planet Around Sun-Like Star

TIME AND SPACE
Oracle, HP unveil computer to cope with digital explosion

Microsoft courts Chinese consumers with slashed software price

Study Spotlights Anti-satellite And Space Debris Threats

LockMart Demos New Radiator Tech For TSAT Program




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement