Subscribe free to our newsletters via your
. 24/7 Space News .




CLONE AGE
Scripps Research scientists find stem cell reprogramming technique is safer than previously thought
by Staff Writers
La Jolla CA (SPX) Oct 11, 2011


Kristin Baldwin, Ph.D., is an associate professor in the Scripps Research Institute's Dorris Neuroscience Center. Credit: photo courtesy of The Scripps Research Institute.

Stem cells made by reprogramming patients' own cells might one day be used as therapies for a host of diseases, but scientists have feared that dangerous mutations within these cells might be caused by current reprogramming techniques. A sophisticated new analysis of stem cells' DNA finds that such fears may be unwarranted.

"We've shown that the standard reprogramming method can generate induced pluripotent stem cells that have very few DNA structural mutations, which are often linked to dangerous cell changes such as tumorigenesis," said Kristin Baldwin, associate professor at The Scripps Research Institute's Dorris Neuroscience Center and a senior author of the report, which appears in the October 7, 2011 issue of the journal Cell Stem Cell.

For this study the Baldwin lab collaborated with a genomics and bioinformatics expert, Ira M. Hall, an assistant professor of biochemistry and molecular genetics at the University of Virginia who is co-senior author.

The induced pluripotent stem cell (iPSC) technique was first described in 2006. It requires the insertion into an ordinary non-stem cell of four special genes, whose activities cause the cell to revert to a state like that of embryonic stem cell.

In principle, iPSCs may be used to repair diseased or damaged tissues, and because they are made from a patient's own cells, they shouldn't provoke an immune reaction.

But recent studies have found unacceptably high levels of mutations in iPSCs derived from adult human cells. That has led to widespread suspicion that the reprogramming process is largely to blame.

In the new study, the Scripps Research and University of Virginia researchers set out to investigate this issue using the latest chromosomal error-mapping methods.

"The techniques that our University of Virginia colleagues brought to this study are much more sensitive than anything else that's available right now," said Michael J. Boland, a research associate in the Scripps Research Baldwin lab and co-first author of the paper with Aaron R. Quinlan, a postdoctoral researcher in Hall's lab.

The new methods included a high-resolution version of a DNA-error-finding technique known as paired-end mapping, and an advanced algorithm, "HYDRA," for handling the voluminous mapping data.

To generate the iPSCs, the Scripps Research team followed the standard, four-gene reprogramming procedure, but sought to minimize other potential sources of DNA mutations that might have influenced some previously reported results.

The donor cells they selected were not decades-old human skin cells, but relatively error-free fibroblast cells from fetal mice. The researchers also kept these fibroblast cells only briefly in lab dishes before reprogramming them.

When the team members analyzed these iPSCs they used two strategies to distinguish which mutations were present in rare donor fibroblast cells and which were newly acquired during reprogramming. Their advanced techniques also allowed them to find more kinds of mutations, across a wider range of the genome, than ever before.

Yet instead of finding more mutations, they found almost none. "We sequenced three iPSC lines at very high resolution, and were surprised to find that very few changes to the chromosomal sequence had appeared during reprogramming," said Boland.

Each of the iPSC lines contained only a single mutation that probably originated from the reprogramming process; two affected genes while the other appeared not to. Mutations inherited from the donor fibroblast cell were present in one pair of lines, while a second line "inherited" none.

The researchers were particularly cheered by the complete absence of new "retroelement transpositions"-mutations caused by retrovirus-like sequences that burrowed into the mammalian genome long ago that can become active again in certain cell types.

All cells have ways to suppress these retroelements, but the suppression mechanisms in normal cells are different from those in stem cells, so the researchers had worried that retroelements would be allowed to escape suppression during the transition to a stem cell state.

While no previous surveys of iPSCs could detect these mutations, this study showed that despite very sensitive detection of controls, no retroelements had become active during reprogramming. "That was is very encouraging, because retroelement mutations can be very damaging to the genome," Boland said.

Some of the mutations seen in human iPSCs in previous studies might have been due to incomplete reprogramming that impaired the cells' DNA-maintenance mechanisms.

In this study using mouse iPSCs, however, there was no doubt that a complete reprogramming to an embryonic state had occurred: all three iPSC lines were used to produce live, fertile mice, in work that Boland, Baldwin, and their colleagues described in Nature in 2009.

"The mice generated from these cells have survived to a normal lab-mouse lifespan without obvious diseases that might arise from new DNA mutations," said Baldwin.

Her lab now is trying to determine whether a reprogramming method similar to the one used with mouse iPSCs in this study could also yield relatively error-free human iPSCs.

"If our results with these mouse cells are applicable to human cells, then selecting better donor cells and using more sensitive genome-survey techniques should allow us to identify reprogramming methods that can produce human iPSCs that will be safer or more useful for therapies than current lines," she said.

Other contributors to the paper, "Genome Sequencing of Mouse Induced Pluripotent Stem Cells Reveals Retroelement Stability and Infrequent DNA Rearrangement during Reprogramming," are Mitchell L. Leibowitz and Svetlana Shumilina of Hall's lab at the University of Virginia, and Sidney M. Pehrson of Baldwin's lab at Scripps Research.

.


Related Links
Scripps Research Institute
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLONE AGE
Scientists turn back the clock on adult stem cells aging
Atlanta GA (SPX) Sep 21, 2011
Researchers have shown they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate. The findings could lead to medical treatments that may repair a host of ailments that occur because of tissue damage as people age. A research group led by the Buck Institute for Research on Aging and the Georgia Institute of Technology ... read more


CLONE AGE
Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NASA Invites Students to Name Moon-Bound Spacecraft

CLONE AGE
Mars Express: Current flows and 'islands' in Ares Vallis

Opportunity is on the Move Again

Tracing the Canals of Mars

Mars Science Laboratory Meets its Match in Florida

CLONE AGE
UN highlights everyday benefits from space science and technology

Shot US lawmaker honors astronaut husband

U.S. sues astronaut over space camera

AAS Society Members Win 2011 Nobel Prize in Physics

CLONE AGE
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

CLONE AGE
It's All in the Mix With Fluid Physics in Space

DLR ROKVISS robotic arm returns from space

Commercial space deliveries 'within months': NASA

Private US capsule not to dock with ISS

CLONE AGE
Chinese rocket sends French telecom satellite into space

On-time preparations continue for Soyuz' milestone mission from French Guiana

US telecoms satellite reaches designated orbit

Cape Canaveral continues cleanup efforts

CLONE AGE
Astronomers Find Elusive Planets in Decade-Old Hubble Data

University of Texas-led Team Discovers Unusual Multi-Planet System with NASA's Kepler Spacecraft

Heavy Metal Stars Produce Earth-Like Planets

Doubts Over Fomalhaut b

CLONE AGE
BlackBerry glitches continue for second day

Bangladesh launches $130 laptop for schools

Boeing and Lion Air Pioneer Precision Satellite Navigation Technology

S. Korea's LG unveils ultra-high-speed smartphone




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement