Subscribe free to our newsletters via your
. 24/7 Space News .




INTERNET SPACE
Rice breakthrough could double wireless capacity with no new towers
by Staff Writers
Houston TX (SPX) Sep 08, 2011


Rice University graduate student Melissa Duarte with a "full-duplex" test device. The technology, which allows wireless devices to "talk" and "listen" to networks on the same frequency, could double throughput on wireless phone networks. Credit: Jeff Fitlow/Rice University

The days of waiting for smartphones to upload video may be numbered. Rice University engineering researchers have made a breakthrough that could allow wireless phone companies to double throughput on their networks without adding a single cell tower.

Rice's new "full-duplex" technology allows wireless devices like cell phones and electronic tablets to both "talk" and "listen" to wireless cell towers on the same frequency - something that requires two frequencies today.

"Our solution requires minimal new hardware, both for mobile devices and for networks, which is why we've attracted the attention of just about every wireless company in the world," said Ashutosh Sabharwal, professor of electrical and computer engineering at Rice.

"The bigger change will be developing new wireless standards for full-duplex. I expect people may start seeing this when carriers upgrade to 4.5G or 5G networks in just a few years."

In 2010, Sabharwal and Rice colleagues Melissa Duarte and Chris Dick published the first paper showing that full-duplex was possible . That set off a worldwide race to demonstrate that the technology could actually be used in a real network.

This summer, Sabharwal and Rice's Achaleshwar Sahai and Gaurav Patel set new performance records with a real-time demo of the technology that produced signal quality at least 10 times better than any previously published result.

"We showed that our approach could support higher throughput and better link reliability than anything else that's been demonstrated, which is a plus for wireless carriers," Sabharwal said.

"On the device side, we've shown that we can add full duplex as an additional mode on existing hardware. Device makers love this because real estate inside mobile devices is at a premium, and it means they don't have to add new hardware that only supports full duplex."

To explain why full-duplex wireless was long thought impossible for wireless networks, Sabharwal uses the analogy of two people standing far apart inside an otherwise empty arena.

If each shouts to the other at the same time, neither can hear what the other is saying. The easy solution is to have only one person speak at a time, and that's what happens on two-way radios where only one person may speak at a given time. Cell phones achieve two-way communications by using two different frequencies to send and listen.

Rice's team overcame the full-duplex hurdle by employing an extra antenna and some computing tricks. In the shouting analogy, the result is that the shouter cannot hear himself, and therefore hears the only other sound in the arena - the person shouting from far away.

"We send two signals such that they cancel each other at the receiving antenna - the device ears," Sabharwal said. "The canceling effect is purely local, so the other node can still hear what we're sending."

He said the cancellation idea is relatively simple in theory and had been proposed some time ago. But no one had figured a way to implement the idea at low cost and without requiring complex new radio hardware.

"We repurposed antenna technology called MIMO, which are common in today's devices," Sabharwal said.

"MIMO stands for 'multiple-input multiple-output' and it uses several antennas to improve overall performance. We took advantage of the multiple antennas for our full-duplex scheme, which is the main reason why all wireless carriers are very comfortable with our technology."

Sabharwal said Rice is planning to roll its full-duplex innovations into its "wireless open-access research platform," or WARP.

WARP is a collection of programmable processors, transmitters and other gadgets that make it possible for wireless researchers to test new ideas without building new hardware for each test. Sabharwal said adding full-duplex to WARP will allow other researchers to start innovating on top of Rice's breakthrough.

"There are groups that are already using WARP and our open-source software to compete with us," he said. "This is great because our vision for the WARP project is to enable never-before-possible research and to allow anyone to innovate freely with minimal startup effort."

Sabharwal's team has gone one step further and achieved asynchronous full-duplex too - that is one wireless node can start receiving a signal while it's in the midst of transmitting. Asynchronous transmission is import for carriers wishing to maximize traffic on their networks, and Rice's team is the first to demonstrate the technology.

"We've also developed a preliminary theory that explains why our system is working the way that it is," Sabharwal said. "That's also important for carriers and device makers, because engineers aren't likely to implement something like this without a clear understanding of fundamental tradeoffs."

.


Related Links
Rice University
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERNET SPACE
Bartz fired as Yahoo! chief executive
San Francisco (AFP) Sept 6, 2011
Yahoo!'s board of directors fired chief executive Carol Bartz on Tuesday, less than three years after she was brought in to help turn around the struggling Internet company. Yahoo! said Bartz was being removed "effective immediately" and that chief financial officer Timothy Morse would serve as interim chief executive while the board of directors searches for a new CEO. Yahoo! also said ... read more


INTERNET SPACE
NASA to launch Moon-bound twin spacecraft

GRAIL and the Mystery of the Missing Moon

NASA Spacecraft Images Offer Sharper Views of Apollo Landing Sites

Moon Mission Ready to Fly

INTERNET SPACE
Sealed-in British scientist relies on plants to breathe

Microbe Risk When Rover Wheels Hit Martian Dirt

Finishing Work at Tinsdale 2

Rare martian lake delta spotted by Mars Express

INTERNET SPACE
NASA Needs to Preserve Skilled Astronaut Corps In Post-Shuttle Era

US astronaut shortage poses risks: study

Louisiana Tech and NASA partner to conduct zero-gravity experiments

Space Agencies Meet To Discuss A Global Exploration Roadmap

INTERNET SPACE
Tiangong 1 might be launched in late September

Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

INTERNET SPACE
NASA mulls 'what-ifs' of unmanned space station

Wyle Selects Paragon Software For Disaster Recovery Solutions For ISS

Progress 44 accident and its consequences for Space Station

Canadian Robot Repairs Components on the Space Station

INTERNET SPACE
Russia beefs up Plesetsk space center funding

Kazakhstan won't ban Russian rocket launches from Baikonur

SwRI selected as payload integrator for three NASA suborbital flight opportunities research providers

Ariane 5's upper payload completes its integration at the Spaceport

INTERNET SPACE
The diamond planet

Greenhouse Effect Could Extend Habitable Zone

A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

INTERNET SPACE
Honeywell Wins Ground Systems and Mission Operations At Goddard

Report: Samsung, Microsoft tie up for new tablet

Indra Finishes Implementation Of The First Four Radar Stations In India

Google provides HTC ammo in Apple patent fight




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement