Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Radar Measurements of Highest Precision
by Staff Writers
Karlsruhe, Germany (SPX) Sep 21, 2012


The radar system in the measurement chamber: The hardware was developed by RUB, algorithmics by KIT. (Photo: Timo Jaeschke, RUB).

Scientists of KIT and Ruhr-Universitat Bochum (RUB) have reached a record precision in radar distance measurements. With the help of a new radar system, an accuracy of one micrometer was achieved in joint measurements. The system is characterized by a high precision and low cost. Potential applications lie in production and plant technology.

Precise determination of distances is of increasing importance in fabrication technology, for instance, when actuating robots, producing micromechanical components, or controlling machine tools. Frequently, glass scales, inductive sensors, or laser measurement systems are used for distance measurements. Glass scales are very precise and reach micrometer precision.

However, they are too inflexible and expensive for daily use. Inductive sensors measuring distances with a coil, magnetic field, and movement work in a contact-free manner and, hence, without wear, but are limited in the measurement repetition rate.

Lasers also allow for a highly precise measurement, but are not suited for environments with dust, humidity, or strongly changing light conditions. Radar signals, by contrast, can penetrate dust and fog quite well. So far, radar systems have been used mainly for weather observation, air monitoring or distance measurement in vehicles.

Scientists of the Institut fur Hochfrequenztechnik und Elektronik (IHE) of Karlsruhe Institute of Technology (KIT) under Prof. Thomas Zwick and of the Chair for Integrated Systems of Ruhr-Universitat Bochum (RUB) under Prof. Nils Pohl have now developed and successfully applied a radar system for distance measurements.

It is characterized by a so far unreached precision: In a joint test in July this year, the researchers from Karlsruhe and Bochum reached a new record precision for radar distance measurements of one mi-crometer. One micrometer is a millionth of a meter. For comparison: A human hair is about 40 to 60 micrometers thick.

For measurement, the scientists use a frequency-modulated continuous wave radar (FMCW radar), whose emitter is operated continuously during measurement. The RUB researchers developed the hardware, KIT scientists the algorithmics. The radar system with a special measurement setup measures distances of up to several meters in free space with micrometer accuracy.

Compared to laser systems, this system is not only cheaper, but can also measure absolute positions. Due to this quasi unlimited range of uniqueness, the radar is far superior to the laser.

The radar system is now being optimized in several research projects. Its accuracy will be further improved. In the future, it will be used to make measurements in production and plant technology with high precision, in a flexible manner, and at low costs.

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Wurttemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

.


Related Links
KIT
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Lockheed Martin Awarded Contract to Solidify Long Range Radar Requirement for 3DELRR Program
Syracuse NY (SPX) Sep 20, 2012
The U.S. Air Force awarded Lockheed Martin a nearly $36 million contract for the next part of its Three Dimensional Expeditionary Long Range Radar (3DELRR) program. The 3DELRR is intended to serve as the principal long-range, ground-based sensor for detecting, identifying, tracking, and reporting aerial targets for the Air Force. The system, which will replace the AN/TPS-75 air surveillanc ... read more


TECH SPACE
Protection for Moon, Mars astronauts eyed

Russia to start research base on the Moon

Remains of astronaut legend Neil Armstrong buried at sea

Memorial service honors 'man on the moon' Armstrong

TECH SPACE
NASA Mars Rover Targets Unusual Rock En Route to First Destination

Dark Bands Run Through Light Layers

NASA Mars Rover Curiosity Looks at Ground Ahead, Moons Above

'Jake Matijevic' Contact Target for Curiosity

TECH SPACE
Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

Boeing Establishes Configuration of Commercial Crew Transportation

TECH SPACE
Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

TECH SPACE
Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

ISS Crew Enjoys Light Duty Day

Europe's ATV-3 Spacecraft to Readjust Space Station's Orbit

TECH SPACE
Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

Failure Review Oversight Board Establishes Proton Return to Flight Schedule

HISPASAT chooses Arianespace to launch its Amazonas 4A and AG1 satellites

TECH SPACE
Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

TECH SPACE
iPhone 5 rollout draws big crowds worldwide

Using a laser to 'see' the smallest world

YouTube seeking education video 'gurus'

Angling for gold




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement