Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
RIT Team Simulates First Merger Of Three Black Holes On A Supercomputer
by Staff Writers
Rochester NY (SPX) Apr 10, 2008


The RIT team's triple merger simulates the simplest case of equal masses and nonspinning black holes, a prerequisite for exploring configurations of unequal masses and different spins and rotations. The center's supercomputer cluster "newHorizons" processed the simulations and performed evolutions of up to 22 black holes to verify the results.

The same team of astrophysicists that cracked the computer code simulating two black holes crashing and merging together has now, for the first time, caused a three-black-hole collision.

Manuela Campanelli, Carlos Lousto and Yosef Zlochower-scientists in Rochester Institute of Technology's Center for Computational Relativity and Gravitation-simulated triplet black holes to test their breakthrough method that, in 2005, merged two of these large mass objects on a supercomputer following Einstein's theory of general relativity.

The new simulation of multiple black holes evolving, orbiting and eventually colliding confirmed a robust computer code free of limitations. The May issue of Physical Review D will publish the team's latest findings in the article "Close Encounters of Three Black Holes," revealing the distinct gravitational signature three black holes might produce. The story will run under the "Rapid Communications" section.

"We discovered rich dynamics leading to very elliptical orbits, complicated orbital dynamics, simultaneous triple mergers and complex gravitational waveforms that might be observed by gravitational wave detectors such as LIGO and LISA," says Lousto, professor in RIT's School of Mathematical Sciences.

"These simulations are timely because a triple quasar was recently discovered by a team led by Caltech astronomer George Djorgovski. This presumably represents the first observed supermassive black hole triplet."

The RIT team's triple merger simulates the simplest case of equal masses and nonspinning black holes, a prerequisite for exploring configurations of unequal masses and different spins and rotations. The center's supercomputer cluster "newHorizons" processed the simulations and performed evolutions of up to 22 black holes to verify the results.

"Twenty-two is not going to happen in reality, but three or four can happen," says Yosef Zlochower, an assistant professor in the School of Mathematical Sciences.

"We realized that the code itself really didn't care how many black holes there were. As long as we could specify where they were located-and had enough computer power-we could track them."

Specially designed high-performance computers like newHorizons are essential tools for scientists like Campanelli's team who specialize in computational astrophysics and numerical relativity, a research field dedicated to proving Einstein's theory of general relativity. Only supercomputers can simulate the force of impact necessary to generate gravity waves-warps in space-time that might provide clues to the origin of the universe.

Scientists expect to measure actual gravity waves for the first time within the next decade using the ground-based detector known as the Laser Interferometer Gravitational Wave Observatory (LIGO) and the future NASA/European Space Agency space mission Laser Interferometer Space Antenna (LISA).

"In order to confirm the detection of gravitational waves, scientists need the modeling of gravitational waves coming from space," says Campanelli, director of RIT's Center for Computational Relativity and Gravitation.

"They need to know what to look for in the data they acquire otherwise it will look like just noise. If you know what to look for you can confirm the existence of gravitational waves. That's why they need all these theoretical predictions."

Adds Lousto: "Gravity waves can also confirm the existence of black holes directly because they have a special signature.

That's what we're simulating. We are predicting a very specific signature of black hole encounters. And so, if we check that, there's a very strong evidence of existence of black holes."

.


Related Links
RIT's Center for Computational Relativity and Gravitation
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Black Hole Found In Omega Centauri
Paris, France (ESA) Apr 04, 2008
Omega Centauri has been known as an unusual globular cluster for a long time. A new result obtained by the NASA/ESA Hubble Space Telescope and the Gemini Observatory reveals that the explanation behind omega Centauri's peculiarities may be a black hole hidden in its centre. One implication of the discovery is that it is very likely that omega Centauri is not a globular cluster at all, but ... read more


TIME AND SPACE
NASA Sets Sights On Lunar Dust Exploration Mission

The 2008 Great Moonbuggy Race

UMaine Engineering Team To Test Inflatable Habitats For NASA Moon Mission

Workers Ready Course For NASA's 15th Annual Great Moonbuggy Race

TIME AND SPACE
NASA Spacecraft Images Mars Moon In Color And In 3D

Spirit Advances Toward Midwinter

Visting Mars, Again And Again

Mars Rover Opportunity Completes Dental Checkup At Victoria Crater's Duck Bay

TIME AND SPACE
Astronauts relish new Asian space food

NASA starts new science Web site

NASA officials report Goddard 'incident'

Hall of fame inducts NASA technologies

TIME AND SPACE
Three Rocketeers For Shenzhou

China's space development can pose military threat: Japan

Brazil To Deepen Space Cooperation With China

China Approves Second-Phase Lunar Probe Program

TIME AND SPACE
The ESA opens a new space laboratory

First Korean astronaut docks with space station

Astronauts Relish New Asian Space Food As Expedition 17 Docks

New Station Crew Prepares For Launch Tuesday

TIME AND SPACE
Russia To Conduct 28 Space Launches From Baikonur In 2008

Vietnam delays launch of first satellite

Successful Qualification Firing Test For Zefiro 23

Zenit Rocket To Orbit Israeli Satellite In Late April

TIME AND SPACE
New Rocky Planet Found In Constellation Leo

New Laser Technology Could Find First Earth-like Planets

Scientists Discover 10 New Planets Outside Solar System

Googling Alien Life

TIME AND SPACE
Ball Aerospace GFO Satellite Begins Eleventh Year On Orbit

Newly Discovered Superinsulators Promise To Transform Materials Research, Electronics Design

Chemists work on bamboo fabric development

TDRS-1 Satellite Reaches 25 Years Of Age




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement