Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Quantum cats are hard to see
by Staff Writers
Calgary, Canada (SPX) Dec 21, 2011


Christoph Simon teaches physics at the University of Calgary. He is part of an international team of researchers who published a paper explaining the difficulty of detecting quantum effects. Credit: Courtesy of the University of Calgary.

Are there parallel universes? And how will we know? This is one of many fascinations people hold about quantum physics. Researchers from the universities of Calgary and Waterloo in Canada and the University of Geneva in Switzerland have published a paper this week in Physical Review Letters explaining why we don't usually see the physical effects of quantum mechanics.

"Quantum physics works fantastically well on small scales but when it comes to larger scales, it is nearly impossible to count photons very well. We have demonstrated that this makes it hard to see these effects in our daily life," says Dr. Christoph Simon, who teaches in the Department of Physics and Astronomy at the University of Calgary and is one of the lead authors of the paper entitled: Coarse-graining makes it hard to see micro-macro entanglement.

It's well known that quantum systems are fragile. When a photon interacts with its environment, even just a tiny bit, the superposition is destroyed.

Superposition is a fundamental principle of quantum physics that says that systems can exist in all their possible states simultaneously. But when measured, only the result of one of the states is given.

This effect is known as decoherence, and it has been studied intensively over the last few decades.

The idea of decoherence as a thought experiment was raised by Erwin Schrodinger, one of the founding fathers of quantum physics, in his famous cat paradox: a cat in a box can be both dead and alive at the same time.

But, according to the authors of this study, it turns out that decoherence is not the only reason why quantum effects are hard to see.

Seeing quantum effects requires extremely precise measurements. Simon and his team studied a concrete example for such a "cat" by using a particular quantum state involving a large number of photons.

"We show that in order to see the quantum nature of this state, one has to be able to count the number of photons in it perfectly," says Simon.

"This becomes more and more difficult as the total number of photons is increased. Distinguishing one photon from two photons is within reach of current technology, but distinguishing a million photons from a million plus one is not."

.


Related Links
University of Calgary
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
A 50-year quest to isolate the thermoelectric effect is now over: Magnon drag unveiled
Bellaterra, Spain (SPX) Dec 20, 2011
As electrons move past atoms in a solid, their charge distorts the nearby lattice and can create a wave. Reciprocally, a wave in the lattice affects the electrons motion, in analogy to a wave in the sea that pushes a surfer riding it. This interaction results in a thermoelectric effect that was first observed during the 1950's and has come to be known as phonon-drag, because it can be quan ... read more


TIME AND SPACE
Peres promotes Israeli moon probe

Hundreds of NASA's moon rocks missing: audit

Schafer Corp Signs Licensing Agreement with MoonDust Technologies

Russia wants to focus on Moon if Mars mission fails

TIME AND SPACE
Meteorite Shock Waves Trigger Dust Avalanches on Mars

Opportunity at One of its Two Winter Spots

Scientists find microbes in lava tube living in conditions like those on Mars

MARSIS Completes Measurement Campaign Over Martian North Pole

TIME AND SPACE
Astrophysicist John Grunsfeld to Head NASA Science Directorate

A Brighter Future for Spaceflight

Goddard Scientists Selected as Participating Scientists in Mars Lab and Cassini Missions

Mankind faces long road in space exploration

TIME AND SPACE
Tiangong-1 orbiter starts planned cabin checks against toxic gas

China celebrates success of space docking mission

Two and a Half Men for Shenzhou

China honors its 'father' of space efforts

TIME AND SPACE
Russia sends multinational crew to ISS

As Soyuz Rolls ISS Crew Work On Science

ESA astronaut Andre Kuipers Ready For Launch To ISS

Astronaut TJ Creamer Learns Space Station Science From the Ground Up

TIME AND SPACE
Next ESA Astronaut Ready For Launch As Soyuz Rolls Out

Acra Control Proven in Low Earth Orbit

Vega moves closer to its first liftoff

Arianespace Signs First launch contracts for Vega

TIME AND SPACE
NASA Discovers First Earth-size Planets Beyond Our Solar System

First Earth-sized planets found

Earth-sized worlds spotted in new advance for exoplanets

Giant Super-Earths Made Of Diamond Are Possible

TIME AND SPACE
Canada hunts for rare earth metals as China cuts back

Split decision in Microsoft smartphone patent case

Hollywood still struggling to focus 3D technology

Research could improve laser-manufacturing technique




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement