Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Previewing the next steps on the path to a magnetic fusion power plant
by Staff Writers
Princeton NJ (SPX) Feb 22, 2013


File image: ITER.

Scientists around the world have crossed a threshold into a promising and challenging new era in the quest for fusion energy. So says physicist George "Hutch" Neilson, director of advanced projects at the U.S. Department of Energy's Princeton Plasma Physics Laboratory, in remarks prepared for the 2013 annual meeting of the American Association for the Advancement of Science in Boston.

The new phase has begun with the construction of ITER, a fusion facility of unprecedented size and power that the European Union, the United States and five other countries are building in France. Plans call for ITER to produce 500 million watts of fusion power for some 300 second during the 2020s. With construction of ITER under way, many national fusion programs "are embarking on their own projects to demonstrate the production of electricity from fusion energy," Neilson said.

These nations are considering "DEMO" programs that would mark the final step before the construction of commercial fusion facilities by midcentury. Such programs have brought worldwide researchers together to discuss common challenges in annual workshops that the International Atomic Energy Agency began sponsoring last year. "The scientific and technical issues for fusion are well known," said Neilson, "but the search for solutions is extremely challenging."

The key issues:

+ Development of computer codes to guide the design of DEMO plants.

+ Development of material for the interior of the plants.

+ Methods for extracting fusion power.

+ Methods for handling the exhaust from fusion reactions.

+ Requirements for devices to develop DEMO components.

Individual countries are exploring their own paths to a DEMO, based on their perceived need for such energy. All such plans remain tentative and subject to government approval.

A look at the possible roadmaps that countries are considering:
+ China-The world's most populous nation is pushing ahead with plans for a device called China's Fusion Engineering Test Reactor (CFETR) that would develop the technology for a demonstration fusion power plant. Construction of the CFETR could start around 2020 and be followed by operation of a DEMO in the 2030s.

+ Europe and Japan-These programs are jointly building a powerful tokamak called JT-60SA in Naka, Japan, as a complement to ITER. Plans call for construction to be completed in 2019. The Japanese and Europeans will then pursue similar but independent timelines. Both could start engineering design work on a DEMO around 2030, following the achievement of ITER milestones, and placing the DEMO in operation in the 2030s.

+ India-The country could begin building a device called SST-2 to develop components for a DEMO around 2027. India could start construction of a DEMO in 2037.

+ Korea-The program plans to build a machine that it calls K-DEMO that would develop components in the first phase, called K-DEMO-1, and utilize the components in the second phase, or K-DEMO 2. Construction could commence in the mid-to-late 2020s, with operations starting in the mid-2030s.

+ Russia-The country plans to develop a fusion neutron source (FNS), a facility that would produce neutrons, the chief form of energy created by fusion reactions, in preparation for a DEMO. The FNS project is part of a Russian commercial development strategy that runs to 2050.

+ United States-A next-step Fusion Nuclear Science Facility (FNSF) is under consideration. It would be used to investigate materials properties under fusion conditions, and develop components for a DEMO. Construction of the FNSF could start in the 2020s.

.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls
Knoxville TN (SPX) Feb 01, 2013
The research of a multi-institutional team from the U.S., Japan, and France, led by Predrag S. Krstic of the Joint Institute for Computational Sciences and Jean Paul Allain of Purdue University has answered the question of how the behavior of plasma-the extremely hot gases of nuclear fusion-can be controlled with ultra-thin lithium films on graphite walls lining thermonuclear magnetic fusion dev ... read more


ENERGY TECH
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

ENERGY TECH
NASA Rover Confirms First Drilled Mars Rock Sample

India plans mission to Mars in 2013

Rover finds gray rock beneath Red Planet's surface

Bleach could hamper Mars life search

ENERGY TECH
Supersonic skydiver's records confirmed

Kennedy Engineers Designing Plant Habitat For ISS

NASA plant study headed to space station

NASA Spinoff 2012 Features New Space Tech Bettering Your Life Today

ENERGY TECH
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

ENERGY TECH
NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

Progress docks with ISS

ENERGY TECH
Countdown begins for Indo-French satellite launch

NASA Seeks University Participants for Summer Rocket Workshop

Another Sea Launch Failure

ILS Concludes Yamal 402 Proton Launch Investigation

ENERGY TECH
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

ENERGY TECH
DARPA Seeks to Defuse the Threat of Ionizing Radiation

Engineers show feasibility of superfast materials

Sony bills PS4 console as gaming's future

Lessons from nature could lead to the creation of new materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement