Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Aging sewers impacting urban watersheds
by Staff Writers
Pittsburgh PA (SPX) Mar 13, 2013


Over a two-year period, the researchers collected water samples biweekly from the small stream located in Pittsburgh's East End during both rainy and dry time periods with intensive sampling during one summer storm.

Aging sewer systems are spilling a considerable amount of nitrogen into urban watersheds, diminishing both the quality of water and ecosystems' habitats. However, many studies documenting the impacts of nitrogen on urban environs have not properly estimated the contribution of leaky sewer systems-until now.

Using water samples from the Pittsburgh-based Nine Mile Run watershed, a Pitt research team reveals in the current issue of Environmental Science and Technology that an estimated 10 to 20 tons of reactive nitrogen from sewage flows into Pittsburgh's Monongahela River every year from the six-square-mile watershed.

That means that up to 12 percent of all sewage produced by residents living in the Nine Mile Run watershed area leaks from the sewers and is transferred to the stream, negatively affecting stream water quality.

"This is a very complicated problem," said Marion Divers, principal author of the paper and a Pitt PhD candidate who conducted the study under the supervision of Pitt assistant professors of geology and planetary science Emily Elliott and Daniel Bain, who were coauthors of the paper.

"You build a sewer system once, put it underground, and unless there's a catastrophic failure, you may not have a reason to dig it up and make sure it's not leaking. Now sewers across the United States and in Pittsburgh are aging, and as these systems grow older, more sewage is leaking into groundwater and streams."

While living organisms need nitrogen to build essential proteins, leaky sewer systems, the burning of fossil fuels, and overuse of chemical fertilizers have contributed to an overabundance of nitrogen in U.S. rivers and streams. Too much nitrogen can deplete the water of oxygen, with results as threatening as those seen in the Gulf of Mexico Dead Zone, where marine life doesn't have the oxygen necessary to live.

An estimated 10 to 20 tons of reactive nitrogen from sewage flows into Pittsburgh's Monongahela River every year from the Nine Mile Run watershed.

"Leaky sewers are simply not something most people are interested in until they begin to smell it in the stream or see things like a particular fish disappear from the stream," said Bain. "Based on the results from our Nine Mile Run study, this paper forces the wider urban ecology community to more carefully consider this sewage problem."

In order to accurately measure nitrogen's impact on Nine Mile Run, the Pitt team had to first determine how much was coming from leaky sewer systems.

Over a two-year period, the researchers collected water samples biweekly from the small stream located in Pittsburgh's East End during both rainy and dry time periods with intensive sampling during one summer storm.

Nitrogen concentrations were measured in the samples, and the researchers used this data to estimate sewage contributions to nitrogen in the stream's water. Notably, the results highlighted that sewers in this study basin are leaking consistently, even during dry weather conditions.

While the apparent volumes of sewage are concerning, the study also reaffirms the substantial ability of urban systems to hold onto this nitrogen, despite the heavily impacted stream channel and the predominance of paved areas.

"This suggests a pervasive influence of leaking sewers-even during periods without rainfall. This is in addition to the raw sewage contributions during wet weather from combined sewer overflows that are currently the subject of mitigation efforts in Pittsburgh," said Elliott. "Our report highlights the importance of assessing nitrogen leakage from sewers into our waterways, particularly as sewer systems age across the United States."

The paper, "Constraining Nitrogen Inputs to Urban Streams from Leaking Sewers Using Inverse Modeling: Implications for Dissolved Inorganic Nitrogen (DIN) Retention in Urban Environments," appeared online Feb. 17 in Environmental Science and Technology. This research was supported by the University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, the Pennsylvania Water Resources Research Institute, the Geological Society of America, and the U.S. Steel Foundation.

.


Related Links
University of Pittsburgh
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
It's only natural: Lawrence Livermore helps find link to arsenic-contaminated groundwater
Livermore CA (SPX) Mar 12, 2013
Human activities are not the primary cause of arsenic found in groundwater in Bangladesh. Instead, a team of researchers from Lawrence Livermore National Laboratory, Barnard College, Columbia University, University of Dhaka, Desert Research Institute and University of Tennessee found that the arsenic in groundwater in the region is part of a natural process that predates any recent human activit ... read more


WATER WORLD
Lunar impacts created seas of molten rock

China to use modified rocket for moon landing mission

Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

WATER WORLD
Maryland explores adaptations strategies for survival on Mars

NASA rover finds conditions once suited to life on Mars

Curiosity Rover's Recovery Moving Forward

NASA Rover Finds Conditions Once Suited for Ancient Life on Mars

WATER WORLD
Technology to detect Alzheimer's takes SXSW prize

Basketball legend Shaq talks tech at SXSW

UK and Kazakhstan agree collaboration in space

Wyle To Provide NASA Ongoing Support For Human Space Flight

WATER WORLD
China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

China's space station will be energy-efficient

WATER WORLD
'Goody Bag' Filled With Sample Processing Supplies Arrives on Station

ESA's Columbus Biolab Facility

SpaceX set for third mission to space station

Record Number of Students Control ISS Camera

WATER WORLD
Grasshopper Successfully Completes 80M Hover Slam

Musk: 'I'd like to die on Mars'

Ariane 5 vehicle for next ATV resupply mission in Kourou

Vega launcher integration continues for its April mission

WATER WORLD
Astronomers Conduct First Remote Reconnaissance of Another Solar System

The Birth of a Giant Planet?

Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

WATER WORLD
Aspirin may lower melanoma risk

NIST quantum refrigerator offers extreme cooling and convenience

Researchers Solve Riddle of What Has Been Holding Two Unlikely Materials Together

Star-shaped waves spotted in shaken fluid




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement