Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Penn Researchers Grow Liquid Crystal 'Flowers' That Can Be Used as Lenses
by Staff Writers
Philadelphia, PA (SPX) Dec 23, 2013


A liquid crystal "flower" under magnification. The black dot at center is the silica bead that generates the flower's pattern. For a larger version of this image please go here.

A team of material scientists, chemical engineers and physicists from the University of Pennsylvania has made another advance in their effort to use liquid crystals as a medium for assembling structures.

In their earlier studies, the team produced patterns of "defects," useful disruptions in the repeating patterns found in liquid crystals, in nanoscale grids and rings. The new study adds a more complex pattern out of an even simpler template: a three-dimensional array in the shape of a flower.

And because the petals of this "flower" are made of transparent liquid crystal and radiate out in a circle from a central point, the ensemble resembles a compound eye and can thus be used as a lens.

The researchers' ongoing work with liquid crystals is an example of a growing field of nanotechnology known as "directed assembly," in which scientists and engineers aim to manufacture structures on the smallest scales without having to individually manipulate each component. Rather, they set out precisely defined starting conditions and let the physics and chemistry that govern those components do the rest.

The starting conditions in the researchers previous experiments were templates consisting of tiny posts. In one of their studies, they showed that changing the size, shape or spacing of these posts would result in corresponding changes in the patterns of defects on the surface of the liquid crystal resting on top of them.

In another experiment, they showed they could make a "hula hoop" of defects around individual posts, which would then act as a second template for a ring of defects at the surface.

In their latest work, the researchers used a much simpler cue.

"Before we were growing these liquid crystals on something like a trellis, a template with precisely ordered features," Kamien said. "Here, we're just planting a seed."

The seed, in this case, were silica beads - essentially, polished grains of sand. Planted at the top of a pool of liquid crystal flower-like patterns of defects grow around each bead.

The key difference between the template in this experiment and ones in the research team's earlier work was the shape of the interface between the template and the liquid crystal.

In their experiment that generated grid patterns of defects, those patterns stemmed from cues generated by the templates' microposts. Domains of elastic energy originated on the flat tops and edges of these posts and travelled up the liquid crystal's layers, culminating in defects. Using a bead instead of a post, as the researchers did in their latest experiment, makes it so that the interface is no longer flat.

"Not only is the interface at an angle, it's an angle that keeps changing," Kamien said. "The way the liquid crystal responds to that is that it makes these petal-like shapes at smaller and smaller sizes, trying to match the angle of the bead until everything is flat."

Surface tension on the bead also makes it so these petals are arranged in a tiered, convex fashion. And because the liquid crystal can interact with light, the entire assembly can function as a lens, focusing light to a point underneath the bead.

"It's like an insect's compound eye, or the mirrors on the biggest telescopes," said Kamien. "As we learn more about these systems, we're going to be able to make these kinds of lenses to order and use them to direct light."

This type of directed assembly could be useful in making optical switches and in other applications.

The team consists of Randall Kamien, professor in the School of Arts and Sciences' Department of Physics and Astronomy; Kathleen Stebe, the School of Engineering and Applied Science's deputy dean for research and professor in Chemical and Biomolecular Engineering and Shu Yang, professor in Engineering's departments of Materials Science and Engineering and Chemical and Biomolecular Engineering. Members of their labs also contributed to the new study, including lead author Daniel Beller, Mohamed Gharbi and Apiradee Honglawan. Their work was published in Physical Review X.

.


Related Links
The University of Pennsylvania
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Throwing out the textbook: Salt surprises chemists
Washington DC (SPX) Dec 23, 2013
Table salt, sodium chloride, is one of the first chemical compounds that schoolchildren learn. New research from a team including Carnegie's Alexander Goncharov shows that under certain high-pressure conditions, plain old salt can take on some surprising forms that violate standard chemistry predictions and may hold the key to answering questions about planet formation. The team, which als ... read more


TECH SPACE
Chang'e 3 Lander and Rover From Above

China's moon rover "sleeps" through lunar night

Will the Moon be carved-up?

NASA Releases New Earthrise Simulation Video

TECH SPACE
'Mars One' will reveal if there is life outside Earth

Mars One mission: big work ahead

Curious Results from Mars

Potential Martians: Mars One selects 1,058 hopefuls among 200,000 applicants

TECH SPACE
Only lawyers profit as tech giants go to war over patents

Space trips open to Chinese travelers

Work on NASA's New Orion Spacecraft Progresses as Engineers Pivot to 2014

Official: Iran to Send Astronaut into Space in 2024

TECH SPACE
China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

TECH SPACE
Station Cosmonauts Complete Spacewalk to Deploy Cameras

Russian cosmonauts Kotov and Ryazansky complete ISS spacewalk

Expedition 38 Sends New Year's Greetings on Off-Duty Day

Station's Replacement Pump Successfully Restarted

TECH SPACE
Antares Launch Scheduled For Jan 7

Russian Rocket Puts Telecoms Satellite Into Orbit

The Athena-Fidus satellite is readied for Arianespace first heavy-lift mission of 2014

Boeing, Energia Achieve Mixed Results in Counterclaims

TECH SPACE
NASA's Hubble Sees Cloudy Super-Worlds With Chance for More Clouds

Researchers use Hubble Telescope to reveal cloudy weather on alien world

Using an Atmosphere to Weigh a Planet

Gaia Mission Could Help Map Exoplanets

TECH SPACE
Solitons in a crystal

Resistance makes waves

Laser Demonstration Reveals Bright Future for Space Communication

Throwing out the textbook: Salt surprises chemists




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement