Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Past and present sea levels in the Chesapeake Bay Region, USA
by Staff Writers
Boulder CO (SPX) Jul 30, 2015


This is a time series of the Blackwater River valley. Top: Intact marsh surveyed from AD 1902 to AD 1904 and presented in a 7.5" USGS topographic map from AD 1905; dark blue hatching around the Blackwater valley is tidal marsh; light blue pattern is freshwater swamp. Middle: Initiation of major ponding seen in an aerial photograph from AD 1938. Bottom: Coalesced ponds forming the informal 'Lake Blackwater' in satellite imagery from AD 2007. Image courtesy GSA Today, DeJong et al., and credits within the caption. For a larger version of this image please go here.

In a new article for GSA Today, authors Benjamin DeJong and colleagues write that sea-level rise (3.4 mm/yr) is faster in the Chesapeake Bay region than any other location on the Atlantic coast of North America, and twice the global average (1.7 mm/yr). They have found that dated interglacial deposits suggest that relative sea levels in the Chesapeake Bay region deviate from global trends over a range of timescales.

According to DeJong and colleagues, "Glacio-isostatic adjustment of the land surface from loading and unloading of continental ice is likely responsible for these deviations, but our understanding of the scale and timeframe over which isostatic response operates in this region remains incomplete because dated sea-level proxies are mostly limited to the Holocene and to deposits 80 ka or older."

To better understand glacio-isostatic control over past and present relative sea level, DeJong and colleagues applied a suite of dating methods to the stratigraphy of the Blackwater National Wildlife Refuge, one of the most rapidly subsiding and lowest-elevation surfaces bordering Chesapeake Bay.

Their data indicate that the region was submerged at least for portions of marine isotope stage (MIS) 3 (about 30 to 60 thousand years ago), although, they note, multiple proxies suggest that global sea level was 40 to 80 meters lower than today.

Today, MIS 3 deposits are above sea level because they were raised by the Last Glacial Maximum forebulge, but decay of that same forebulge is causing ongoing subsidence.

"These results," they write, "suggest that glacio-isostasy controlled relative sea level in the mid-Atlantic region for tens of thousands of years following retreat of the Laurentide Ice Sheet and continues to influence relative sea level in the region."

The study finds that isostatically driven subsidence of the Chesapeake Bay region will continue for millennia, exacerbating the effects of global sea-level rise and impacting the region's large population centers and valuable coastal natural resources.

Pleistocene relative sea levels in the Chesapeake Bay region and their implications for the next century Benjamin D. DeJong, Paul R. Bierman, Wayne L. Newell, Tammy M. Rittenour, Shannon A. Mahan, Greg Balco, and Dylan H. Rood. Pages 4-10; doi: 10.1130/GSATG223A.1.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Geological Society of America
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Scientists track monster waves below the ocean surface
Miami FL (SPX) Jul 27, 2015
A scientific research team spent seven years tracking the movements of skyscraper-high waves in the South China Sea. University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science scientists were part of the collaborative international field study trying to understand how these waves, which rarely break the ocean surface, develop, move and dissipate underwater. These waves, k ... read more


WATER WORLD
NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

Technique may reveal the age of moon rocks during spaceflight

WATER WORLD
New Website Gathering Public Input on NASA Mars Images

Antarctic Offers Insights Into Life on Mars

Earth and Mars Could Share A Life History

Curiosity Rover Inspects Unusual Bedrock

WATER WORLD
Private Space Stations, East-West Tensions Won't Spark Space Race

Massive pool for space and deep-sea training to be built in Essex

Planetary Resources' First Spacecraft Successfully Deployed

Space crew praises US-Russian 'handshake in space' 40 years on

WATER WORLD
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

WATER WORLD
RED epic dragon camera captures riveting images on space station

Launch, docking returns ISS crew to full strength

Russia Launches New Crew to International Space Station

Russia Extends Life of International Space Station Until 2024

WATER WORLD
SMC goes "2-for-2" on weather delayed launch

China tests new carrier rocket

Arianespace inaugurates new fueling facility for Soyuz upper stage

India Earned Over $100Mln Launching Foreign Satellites

WATER WORLD
Finding Another Earth

Kepler Mission Discovers Bigger, Older Cousin to Earth

NASA discovers closest Earth-twin yet

Pulsar Punches Hole In Stellar Disk

WATER WORLD
China's Alibaba to invest $1.0 bn in cloud computing

New chemistry makes strong bonds weak

Insights into catalytic converters

Syntactic foam sandwich fills hunger for lightweight yet strong materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.