Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
On the Boil: New Nano Technique Significantly Boosts Boiling Efficiency
by Staff Writers
Troy NY (SPX) Jul 03, 2008


A scanning electron microscope shows copper nanorods deposited on a copper substrate. Air trapped in the forest of nanorods helps to dramatically boost the creation of bubbles and the efficiency of boiling, which in turn could lead to new ways of cooling computer chips as well as cost savings for any number of industrial boiling application. Rensselaer Polytechnic Institute/ Koratkar.

Whoever penned the old adage "a watched pot never boils" surely never tried to heat up water in a pot lined with copper nanorods.

A new study from researchers at Rensselaer Polytechnic Institute shows that by adding an invisible layer of the nanomaterials to the bottom of a metal vessel, an order of magnitude less energy is required to bring water to boil. This increase in efficiency could have a big impact on cooling computer chips, improving heat transfer systems, and reducing costs for industrial boiling applications.

"Like so many other nanotechnology and nanomaterials breakthroughs, our discovery was completely unexpected," said Nikhil A. Koratkar, associate professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer, who led the project.

"The increased boiling efficiency seems to be the result of an interesting interplay between the nanoscale and microscale surfaces of the treated metal. The potential applications for this discovery are vast and exciting, and we're eager to continue our investigations into this phenomenon."

Bringing water to a boil, and the related phase change that transforms the liquid into vapor, requires an interface between the water and air. In the example of a pot of water, two such interfaces exist: at the top where the water meets air, and at the bottom where the water meets tiny pockets of air trapped in the microscale texture and imperfections on the surface of the pot.

Even though most of the water inside of the pot has reached 100 degrees Celsius and is at boiling temperature, it cannot boil because it is surrounded by other water molecules and there is no interface - i.e., no air - present to facilitate a phase change.

Bubbles are typically formed when air is trapped inside a microscale cavity on the metal surface of a vessel, and vapor pressure forces the bubble to the top of the vessel. As this bubble nucleation takes place, water floods the microscale cavity, which in turn prevents any further nucleation from occurring at that specific site.

Koratkar and his team found that by depositing a layer of copper nanorods on the surface of a copper vessel, the nanoscale pockets of air trapped within the forest of nanorods "feed" nanobubbles into the microscale cavities of the vessel surface and help to prevent them from getting flooded with water. This synergistic coupling effect promotes robust boiling and stable bubble nucleation, with large numbers of tiny, frequently occurring bubbles.

"By themselves, the nanoscale and microscale textures are not able to facilitate good boiling, as the nanoscale pockets are simply too small and the microscale cavities are quickly flooded by water and therefore single-use," Koratkar said. "But working together, the multiscale effect allows for significantly improved boiling. We observed a 30-fold increase in active bubble nucleation site density - a fancy term for the number of bubbles created - on the surface treated with copper nanotubes, over the nontreated surface."

Boiling is ultimately a vehicle for heat transfer, in that it moves energy from a heat source to the bottom of a vessel and into the contained liquid, which then boils, and turns into vapor that eventually releases the heat into the atmosphere.

This new discovery allows this process to become significantly more efficient, which could translate into considerable efficiency gains and cost savings if incorporated into a wide range of industrial equipment that relies on boiling to create heat or steam.

"If you can boil water using 30 times less energy, that's 30 times less energy you have to pay for," he said.

The team's discovery could also revolutionize the process of cooling computer chips. As the physical size of chips has shrunk significantly over the past two decades, it has become increasingly critical to develop ways to cool hot spots and transfer lingering heat away from the chip.

This challenge has grown more prevalent in recent years, and threatens to bottleneck the semiconductor industry's ability to develop smaller and more powerful chips.

Boiling is a potential heat transfer technique that can be used to cool chips, Koratkar said, so depositing copper nanorods onto the copper interconnects of chips could lead to new innovations in heat transfer and dissipation for semiconductors.

"Since computer interconnects are already made of copper, it should be easy and inexpensive to treat those components with a layer of copper nanorods," Koratkar said, noting that his group plans to further pursue this possibility.

The research results of Koratkar's study are presented in the paper "Nanostructure copper interfaces for enhanced boiling," which was published online this week and will appear in a forthcoming issue of the journal Small.

Along with Koratkar, co-authors of the paper include Rensselaer MANE Associate Professor Yoav Peles; Rensselaer mechanical engineering graduate student Zuankai Wang; Rensselaer Center for Integrated Electronics Research Associate Pei-I Wang; University of Colorado at Boulder Chancellor and former Rensselaer Provost G.P. "Bud" Peterson; and UC-Boulder Assistant Research Professor Chen Li.

.


Related Links
Rensselaer Polytechnic Institute (RPI)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
CSIRO Scientist Discovers Natural Invisible Gold
Canberra, Australia (SPX) Jun 27, 2008
The search for these natural but 'invisible' nanoparticles is important. If they can be proved to exist, the knowledge will help give us a deeper understanding of how gold can be transported and deposited by geological processes, and therefore help explorers to find new gold deposits in Australia. Now, hard evidence that gold nanoparticles have finally been seen in nature is presented in a ... read more


NANO TECH
Looking For Early Earth...On The Moon

Moon-Bound NASA Spacecraft Passes Major Preflight Tests

Northrop Grumman Completes LCROSS Thermal Vacuum Testing

NASA Study Provides Next Step To Establishing Lunar Outpost

NANO TECH
Phoenix To Bake Ice-Rich Sample Next Week

Rain Showers On Mars

Mars Sample Return: The Next Step In Exploring The Red Planet

New Soil Analysis Suggests It Rained On Mars Long Ago

NANO TECH
Analex Awarded Three-Year Option On NASA Expendable Launch Vehicles Integrated Support

Russia seals agreement with private investor for space tourism

Fly me to the Moon: Japan firm offers weddings in space

NASA Goddard Has More Than A Dozen Exciting Missions In Next Year

NANO TECH
China's Shot Heard Around The Galaxy

Shenzhou VII Research Crew Ready To Set Out For Launch Center

A Better Focus On Shenzhou

Gallup Poll Shows Americans Unconcerned About China Space Program

NANO TECH
NASA plans two ISS spacewalks next week

Discovery undocks from ISS

Shuttle astronauts bid farewell to space station crew

Shuttle Astronauts Bid Farewell To Space Station Crew

NANO TECH
Russia Launches Rocket With Military Satellite

Inmarsat And ILS Set August 14 For Proton Flight With Inmarsat Satellite

Payload Integration Complete For Arianespace's Fourth Mission Of 2008

Successful Ariane 5 Solid Rocket Booster Test Firing

NANO TECH
Chemical Clues Point To Dusty Origin For Earth-Like Planets

Astronomers discover clutch of 'super-Earths'

Vanderbilt Astronomers Getting Into Planet-Finding Game

NASA Selects MIT-Led Team To Develop Planet-Searching Satellite

NANO TECH
NASA Considers Development Of Student-Led Satellite Initiative

SATLYNX Completes 300 Site SCADA Network Rollout For EDF Energy

Herschel Undergoes Acoustic And Vibration Tests

Russian-US Launch Firm To Put Satellite In Orbit In August




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement