Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
OCULLAR Sees Ocean Color Day and Night
by Lori Keesey for Goddard Space Flight Center
Greenbelt MD (SPX) May 01, 2014


The fully assembled OCULLAR prototype is pictured on the right. A legacy photomultiplier tube is shown on the top left. A new silicon photodetector microradiometer is on the bottom left. Image courtesy NASA Goddard/Bill Hrybyk.

A team led at NASA's Goddard Space Flight Center in Greenbelt, Md., has developed an instrument capable of observing ocean color during normal sunlight conditions and under moonlight - a first-ever capability that will allow scientists to monitor the health and chemistry of the planet's oceans literally around the clock.

The prototype Ocean Color Underwater Low Light Advanced Radiometer (OCULLAR) has shown in field testing that it can measure ocean color under low-light conditions across multiple wavelength bands, from the ultraviolet to the near-infrared. In contrast, current remote-sensing instruments can obtain measurements - based on electromagnetic energy emitted by the sun, transmitted through the atmosphere, reflected off Earth's surface, or upwelled from water masses - only during daylight hours, said Principal Investigator Stan Hooker.

First-of-a-Kind Capability
Of particular interest to scientists studying ocean color is phytoplankton, the microscopic ocean plants that form the base of the oceanic food web. These tiny plants use sunlight and carbon dioxide to produce organic carbon. This process, called photosynthesis, is possible because plants contain chlorophyll, green-colored compounds that trap the energy from sunlight.

Because different types of phytoplankton contain different kinds of chlorophyll, measuring the color of a particular area allows scientists to estimate the amount and general type of phytoplankton there. Since phytoplankton also depend on specific conditions for growth, they frequently become the first to be affected by pollution or some other change in their environment.

"Ocean color is what we see and is a big part of understanding the ocean's diversity," Hooker explained. "You can figure out what's happening in the ocean by looking at the different colors or wavelengths, which then are used to determine what constituents in the water are creating that color."

Until now, however, obtaining these measurements was limited to daylight hours and only during the spring, summer and fall months in the polar regions - a problem Hooker sought to correct with OCULLAR. Inspired in part by NASA "black marble" imagery, which showed Earth at night, Hooker thought, "with the right technology, we could look at the planet at night."

The need, he said, was compelling. "The light levels are so low, you literally lose hours of data around the world and, at the polar areas, an entire season of data."

A Marriage of Two Detector Systems
The team, which also includes Charles Booth and John Morrow, both scientists with Biospherical Instruments Inc. in San Diego, created the new capability by pairing two light-measuring, but distinctively different, detector systems: a miniature and ruggedized photomultiplier tube (PMT) with an existing silicon photodetector microradiometer, with an embedded microprocessor.

When commercialized, Hooker said hybrid OCULLAR instruments would be equipped with seven PMTs paired with seven silicon photodetectors. An eighth photodetector will measure a wavelength useful to ocean color, but difficult to measure with a PMT.

Its functioning is straightforward. When photons - the fundamental particles of light - strike a silicon detector, the photons cause a response that is measured as voltage. When fewer and fewer photons are detected, as occurs under low-light conditions, the detector reports a smaller and smaller voltage.

As a result, the microradiometer's computer "brain" instructs the second detector system - the photomultiplier tube - to swing into action. As its name implies, the PMT multiplies the effect of the photons that enter the system to create a cascade that OCULLAR can easily sense. The photomultiplier capability is not activated under normal sunlight conditions.

Considerably smaller than older legacy ocean-color instruments, which could be as large as an office trash can, an OCULLAR instrument will measure three-and-a-half inches in diameter and about a foot in length - making it compact enough for use on a range of platforms.

"We thought we could pair a photomultiplier tube with a smart silicon photodetector, which we equipped with a computer brain, but we had never done it before," Hooker said. "So we used R and D funds to test that hypothesis. We were completely successful."

Leading the Way to Commercialization
During a field campaign measuring nighttime light off the coast of San Diego - a site purposively selected because future NASA Earth remote-sensing missions likely will concentrate on coastal observations - the team proved the prototype's ruggedness and high sensitivity over a large range of light. "In fact, we were more successful than we thought we would be," Hooker added.

"A human can see objects under full sunlight and barely see objects under a moonless night," explained Hooker. "The illumination for the former is about a billion times the illumination of the latter. The value can be represented as 10 raised to the ninth power, or nine decades of dynamic range. OCULLAR sensors have 14 decades of linear dynamic range, with the added responsivity at the low end of illumination," he added. "So, OCULLAR sensors have five more decades of response to low light than the human eye."

The successful OCULLAR demonstration leads the way to anticipated commercialization and creates a new capability for oceanographers, climate scientists, and others interested in quantifying, understanding, and monitoring the biological productivity of oceans, coastal areas, and inland waters, Hooker said.

The next step is to develop a flight-ready instrument that could be flown first at low altitude and then ultimately on a high-altitude research aircraft, such as NASA's unmanned Global Hawk. The OCULLAR team wants to commercialize the new technology as a low-cost instrument. The idea is to dispatch as many of these instruments as possible to obtain global ocean observations. "We want to start on the ground and keep going upward," Hooker said. Ultimately, the team wants to fly the technology in space.

"We're building something that sees better than the human eye," Hooker said, adding that the instrument could measure conditions under twilight, moonlight, and even beneath sea ice. "And that's quite an accomplishment."

.


Related Links
Technology at NASA
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Two-thirds of underwater search done, no sign of MH370
Perth, Australia (AFP) April 21, 2014
Two-thirds of the planned underwater search for missing Malaysia Airlines flight MH370 has been completed, with no signs so far of the jet, Australian officials said Monday. As many as 10 military aircraft and 11 ships are taking part in the search for the aircraft, which was carrying 239 people when it vanished on March 8 en route from Kuala Lumpur to Beijing. No debris from the plane h ... read more


WATER WORLD
John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

Russian Federal Space Agency is elaborating Moon exploration program

WATER WORLD
Mars Rover Switches to Driving Backwards Due to Elevated Wheel Currents

Mission to Mars

Traces of recent water on Mars

Drill Here? NASA's Curiosity Mars Rover Inspects Site

WATER WORLD
NASA Partners with LittleBits Electronics on STEM Activitie

China village gunning for tourists

NASA Selects Commercial Crew Program Manager

NASA Innovative Advanced Concept Program Seeks Phase II Proposals

WATER WORLD
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

WATER WORLD
NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

WATER WORLD
Arianespace to launch Indonesia satellite BRIsat

Commercial liftoff for Europe's smallest launcher

Russia sends two satellites into space

SpaceX sues US Air Force over satellite contracts

WATER WORLD
Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

Astronomical Forensics Uncover Planetary Disks in NASA's Hubble Archive

An Earth-sized planet that might hold liquid water

WATER WORLD
Element 117 confirmed by scientists, closer to being officially named

TV terrifies and compels with viruses and robots

Newly Identified 'Universal' Property of Metamagnets May Lead to Everyday Uses

Researchers Develop Harder Ceramic for Armor Windows




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.