Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Novel topological crystalline insulator shows mass appeal
by Staff Writers
Chestnut Hill MA (SPX) Sep 09, 2013


Confirmed within the past few years, topological insulators possess interiors that behave like insulators, blocking the flow of electrons.

Disrupting the symmetrical structure of a solid-state topological crystalline insulator creates mass in previously mass-less electrons and imparts an unexpected level of control in this nascent class of materials, an international team of researchers reports in the current edition of Science Express.

The researchers not only confirmed several theoretical predictions about topological crystalline insulators (TCIs), but made a significant experimental leap forward that revealed even more details about the crystal structure and electronic behavior of these newly identified materials, according to Boston College Associate Professor of Physics Vidya Madhavan, one of the lead authors of the report.

The findings could pave the way for engineering the electronic properties of TCI surfaces towards novel functionalities at the nanoscale.

"There is a lot of rich physics here that's waiting to be explored," said Madhavan. "We've opened the door to better understanding topological crystalline insulators and the potential of these materials."

Confirmed within the past few years, topological insulators possess interiors that behave like insulators, blocking the flow of electrons. Yet externally, they contain conducting states where electrons can move freely across their surfaces. A few years ago, physicists first posited the existence of TCIs, a new class of topological materials where conducting surface electrons are theorized to obey fundamental quantum laws set by the crystalline structure of the interior.

Starting with a TCI consisting of lead and selenium, researchers sought to disrupt its structural symmetry by provoking, or doping, the material through the addition of tin, Madhavan said. The subsequent disruption had a dramatic effect on mass-less "Dirac" electrons that are present within the material and behave as relativistic particles. The manipulation added mass to some of these electrons, which took their places side-by-side with the Dirac electrons, a startling result in a solid-state material, Madhavan said.

The new massive electrons were measured topologically through scanning tunneling microscopy and electrically through spectroscopy, the researchers report.

The analysis revealed the Dirac point, which is the defining characteristic of the TCI, said Madhavan. Furthermore, the researchers found that varying the amount of tin imparted a measure of control over the material's properties, fulfilling yet another theoretical prediction.

Madhavan said the results confirmed the TCI's exotic band structure, a measure of the energy a surface electron may or may not possess within a solid. At the same time, the fundamental properties of the TCI remained accessible.

Moreover, observing and controlling Dirac electrons in TCIs paves the way for investigating relativistic physics in solid state systems: physics which was previously accessible only in the experiments of high-energy physics where particles are accelerated to speeds close to light.

In addition, the experiments revealed two distinct regimes of fermiology, an energy boundary used to make determinations about the properties of metals and semiconductors.

Along with Madhavan, the project team featured some of the leading researchers in condensed matter physics, including Boston College Assistant Professor of Physics Stephen Wilson, MIT Assistant Professor of Physics Liang Fu, Princeton University Professor of Physics M. Zahid Hasan, Northeastern University Professor of Physics Arun Bansil and National Taiwan University Researcher Fang Cheng Chou.

.


Related Links
Boston College
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
How brain microcircuits integrate information from different senses
Umea, Sweden (SPX) Aug 21, 2013
A new publication in the top-ranked journal Neuron sheds new light onto the unknown processes on how the brain integrates the inputs from the different senses in the complex circuits formed by molecularly distinct types of nerve cells. The work was led by new Umea University associate professor Paolo Medini. One of the biggest challenges in Neuroscience is to understand how the cerebral co ... read more


CHIP TECH
Scientists say water on moon may have originated on Earth

Moon landing mission to use "secret weapons"

NASA launches spacecraft to study Moon atmosphere

NASA-Funded Scientists Detect Water on Moon's Surface that Hints at Water Below

CHIP TECH
SwRI study suggests debris flows on frozen arctic sand dunes are similar to dark dune spot-seepage flows on Mars

Space Cadets line up for one-way Mars trip

NASA Evaluates Four Candidate Sites for 2016 Mars Mission

Examining Rocks Around Boulder Field

CHIP TECH
SpaceShipTwo commercial space liner breaks sound barrier in test

Andreas Mogensen set for Soyuz mission to ISS in 2015

NASA awards nearly $1.5B in support contracts

NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

CHIP TECH
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

CHIP TECH
ISS Crew Completes Spacewalk Preps

Russian cosmonaut set for space station mission resigns

Russian cosmonauts to start searching for bacterium corroding ISS body

Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

CHIP TECH
Japan sets new date for satellite rocket launch

Arianespace delivers! EUTELSAT 25B/Es'hail 1 and GSAT-7 are orbited by Ariane 5

Arianespace to "reach for the stars" with its Soyuz launch of Europe's Gaia space surveyor spacecraft

Ariane 5 build-up is completed for Arianespace upcoming flight with EUTELSAT

CHIP TECH
NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

Waking up to a new year

Study: Planets might be 'born free' without a parent star

CHIP TECH
New computational approaches speed up the exploration of the universe

Advancing graphene for post-silicon computer logic

Simple compact laser system could detect presence of explosives

Northrop Grumman Completes Demonstration of 3D Expeditionary Long-Range Radar (3DELRR) System




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement