Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New ultracapacitor delivers a jolt of energy at a constant voltage
by Staff Writers
Washington DC (SPX) Jul 26, 2012


File image.

Chemical batteries power many different mobile electronic devices, but repeated charging and discharging cycles can wear them out. An alternative energy storage device called an ultracapacitor can be recharged hundreds of thousands of times without degrading, but ultracapacitors have their own disadvantages, including a voltage output that drops precipitously as the device is discharged.

Now a researcher from the University of West Florida has designed an ultracapacitor that maintains a near steady voltage. The novel constant-voltage design, which may one day help ultracapacitors find new uses in low-voltage electric vehicle circuits and handheld electronics, is described in the American Institute of Physics' Journal of Renewable and Sustainable Energy.

Standard capacitors store energy in an electric field created when opposite electrical charges collect on two plates separated by a thin insulating material. In ultracapacitors the surface area of the plates is increased with a coating of porous activated carbon, which is packed with tiny holes and cracks that can capture charged particles.

The space between the plates is filled with an electrolyte solution containing positive and negative ions. As charge accumulates on the plates, they attract ions, creating a double-layer of stored energy.

In both standard capacitors and ultracapacitors, the voltage drops as the stored charge is released. Most electronic devices, however, require constant voltage to operate. An electronic circuit called a DC-DC converter can change the dropping voltage of the capacitor into a constant voltage output, but the converters experience problems below one volt.

"A significant portion of the energy of the ultracapacitor is held below one volt," notes Ezzat Bakhoum, a professor of electrical engineering at the University of West Florida.

"Operation in that region is very difficult because the DC-DC converter cannot function at such low voltage. Applications where the use of an ultracapacitor is precluded because of this problem include low-voltage systems in electric vehicles, hand-held power tools, toys, and cameras, just to name a few."

So Bakhoum has designed an ultracapacitor that maintains a near-constant voltage without a DC-DC converter. The ultracapacitor is fitted with an electromechanical system that can slowly lift the core of the device out of the electrolyte solution as the stored charged is released.

As the electrolyte drains away, the device can hold less charge, thus lowering, its capacitance. Since the voltage of the capacitor is related to the ratio of the stored charge to the capacitance, the system maintains a steady voltage as charge is siphoned off.

Bakhoum built and tested a prototype of the new ultracapacitor. After attaching a 35-watt load to the device, he found he could successfully program the voltage to stay within a 4.9 to 4.6 volt range. Testing also showed that the constant-voltage mechanism operates with a 99 percent efficiency or higher. The lifetime of the electromechanical motor is expected to be about the same as the lifetime of the ultracapacitor's core, Bakhoum writes.

"The ultracapacitor is a wonderful new energy storage device that has many advantages by comparison with batteries," says Bakhoum. In addition to their near limitless ability to be recharged, ultracapacitors can release a jolt of energy much more quickly than batteries.

One current disadvantage of commercially available ultracapacitors, that they store only a fraction of the energy per unit mass that batteries store, is a challenge that is still being researched. Some groups have experimented, for example, with changing the structure of the electrode to increase surface area, and thus the amount of charge that can be stored.

For Bakhoum, future research steps include modifying the design of the constant-voltage ultracapacitor system so that it can be installed at any angle. He may also explore whether the same type of constant-voltage approach is suitable for new, high-energy-density ultracapacitors.

Paper: "Constant Voltage Ultracapacitor"; Journal: Journal of Renewable and Sustainable Energy; Author: Ezzat G. Bakhoum University of West Florida

.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Radiation damage bigger problem in microelectronics than previously thought
Nashville TN (SPX) Jul 25, 2012
The amount of structural damage that radiation causes in electronic materials at the atomic level may be at least ten times greater than previously thought. That is the surprising result of a new characterization method that uses a combination of lasers and acoustic waves to provide scientists with a capability tantamount to X-ray vision: It allows them to peer through solid materials to p ... read more


CHIP TECH
Another Small Step for Mankind

Russia starts building Moon spaceship, eyes Lunar base

Plans to revisit Moon impeded by financial difficulties

Russia says no manned moon shots till 2018

CHIP TECH
Mystery of missing Mars signals solved

Slow-Going at Cape York for Opportunity

ExoMars program gathers strength

Opportunity Runs the First Martian Marathon

CHIP TECH
XCOR Releases Payload Users Guide for Lynx Suborbital Vehicle

NASA Offers Condolences on the Passing of Pioneering Astronaut Sally Ride

Sally Ride, first US woman in space dead at 61

America Invents Act is a game changer

CHIP TECH
Looking Forward to Shenzhou 10

Argentina, China ink space cooperation deal

Looking Forward to Shenzhou 10

Astronauts in good shape after return

CHIP TECH
White Stork Delivers New Research and Technology Investigations to ISS

Russian cargo ship fails to dock at ISS: NASA

Russian cargo ship fails to dock at ISS during tests

Japanese Rocket Sends Cargo to ISS

CHIP TECH
Initial build-up is underway for Arianespace's fifth Ariane 5 launch in 2012

U.S. Bank Helps Fuel Future Space Flight as Bank behind SpaceX

HYLAS 2 and Intelsat 20 are prepared for Arianespace's next Ariane 5 mission

Degradation Free Spectrometers Sounding Rocket

CHIP TECH
UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

CHIP TECH
Google unveils ultrafast wired home project

Stone Age tools help to streamline modern manufacturing

Headwall's Hyperspectral Sensors Set to Lift Off with NT Space

Cassidian announces passive radar system




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement