Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
New theory may shed light on dynamics of large-polymer liquids
by Liz Ahlberg for University of Illinois
Champaign IL (SPX) Aug 25, 2011


Illinois professor Kenneth S. Schweizer develop a new theory that predicts why entangled polymers are confined to a tube-like region of space and how they respond to applied forces. Photo by L. Brian Stauffer

A new physics-based theory could give researchers a deeper understanding of the unusual, slow dynamics of liquids composed of large polymers. This advance provides a better picture of how polymer molecules respond under fast-flow, high-stress processing conditions for plastics and other polymeric materials.

Kenneth S. Schweizer, the G. Ronald and Margaret H. Professor of materials science and engineering at the University of Illinois, and graduate student Daniel Sussman published their findings in the journal Physical Review Letters.

"This is the first microscopic theory of entangled polymer liquids at a fundamental force level which constructs the dynamic confinement potential that controls slow macromolecular motion," said Schweizer, who also is a professor of chemistry and of chemical and biomolecular engineering and is affiliated with the Frederick Seitz Materials Research Laboratory at the U. of I.

"Our breakthrough lays the foundation for an enormous amount of future work relevant to both the synthetic polymers of plastics engineering and the biopolymers relevant to cell biology and mechanics."

Polymers are long, large molecules that are ubiquitous in biology, chemistry and materials, from the stiff filaments that give cells their structure to plastics. Linear polymers fall into two classes: rigid rods like uncooked spaghetti or flexible strands like al dente noodles.

When in a dense solution, linear polymers become entangled like spaghetti in a pot, intertwining and crowding each other. Each polymer is hemmed in by its neighbors, so that the liquid behaves like an elastic, viscous rubber.

Given enough time, the liquid will eventually flow slowly as polymers crawl along like snakes, a movement called reptation. Researchers have long assumed that each polymer's reptation is confined to a tube-shaped region of space, like a snake slithering through a pipe, but have had difficulty understanding how and why the polymers behave that way.

Schweizer and Sussman's new theory, based on microscopic physics, explains the slow dynamics of rigid entangled polymers and quantitatively constructs the confining dynamic tube from the forces between molecules.

The tube concept emerges as a consequence of the strong interactions of a polymer with its myriad of intertwining neighbors. The theory's mathematical approach sheds greater light on entanglement and better explains experimental data.

"Our ability to take into account these crucial physical effects allows us to predict, not assume, the confining tube concept, identify its limitations, and predict how applied forces modify motion and elasticity," Schweizer said.

Not only does the new theory predict tube confinement and reptative motion, it reveals important limitations. The researchers found that the "tubes" weaken as applied forces increase, to the point where the tube concept fails completely and the liquid loses its rubbery nature. This is particularly important in plastics processing, which exposes polymer liquids to high stress conditions.

Next, the researchers plan to continue to study how external stress or strain quantitatively determine the driven mechanical flow behavior of entangled polymer liquids. They also hope to develop a theory for how attractive forces can compete with entanglement forces to result in soft polymer gels.

.


Related Links
University of Illinois
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Forecasting pipe fractures
Boston MA (SPX) Aug 19, 2011
A computer model that tests automobile components for crashworthiness could also be of use to the oil and gas industry, according to researchers at MIT's Impact and Crashworthiness Laboratory, who are now using their simulations of material deformation in car crashes to predict how pipes may fracture in offshore drilling accidents. As a case study, the team simulated the forces involved in ... read more


TECH SPACE
Man in the Moon Looking Younger

GRAIL Moon Twins are Joined to Their Booster

Moon younger than previously thought

GRAIL Launch Less Than One Month Away

TECH SPACE
Russian, European space agencies to team up for Mars mission

New Rover Snapshots Capture Endeavour Crater Vistas

France, Russia talk of Mars mission

Possibility of Mars microbial life eyed

TECH SPACE
Recent grad's astro feats regarded as research crown 'joule'

Draper Spacesuit Could Keep NASA Astronauts Stable, Healthier in Space

NASA Picks Three Proposals for Flight Demonstration

NASA Selects XCOR to Participate in Suborbital Flight Contract

TECH SPACE
Chinese orbiter launch failure will not affect unmanned space module launch

Rocket malfunction causes satellite to not reach preset orbit

China satellite aborts mission after 'malfunction'

Pausing for Tiangong

TECH SPACE
ISS crew safe despite supply failure: Russia, US

Robonaut successfully passes first test on ISS

Russian Progress space freighter set to undock from ISS

First 3D video transmission live from space

TECH SPACE
Russian spaceship crashes back to Earth

Russia grounds rockets after launch failure

Russia loses contact with new satellite

China successfully launches maritime satellite

TECH SPACE
Astronomers Find Ice and Possibly Methane on Snow White

Hubble to Target 'Hot Jupiters'

Stellar eclipse gives glimpse of exoplanet

Alien World is Blacker than Coal

TECH SPACE
Dutch judge slaps ban on Samsung smartphones

NRL Set to Launch Experimental TacSat-4 Spacecraft

New theory may shed light on dynamics of large-polymer liquids

Sony remodels PlayStation Home




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement