Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New Method Joins Gallium Nitride and Diamond for Better Thermal Management
by Staff Writers
Washington DC (SPX) May 03, 2013


TriQuint Semiconductor.

Many military radio frequency (RF) systems, like radar and communication systems, use a class of power amplifiers (PAs) called monolithic microwave integrated circuits (MIMIC).

MMIC PAs using gallium nitride (GaN) transistors hold great promise for enhanced RF performance, but operational characteristics are strongly affected by thermal resistance.

Much of this resistance comes at the thermal junction where the substrate material of the circuit connects to the GaN transistor. If the junction and substrate have poor thermal properties, temperature will rise and performance will decrease.

DARPA's Near Junction Thermal Transport (NJTT) effort recently demonstrated the first-ever GaN-on-diamond high electron mobility transistor (HEMT). In early tests, the GaN-on-diamond transistor displayed substantially lower junction temperatures than comparable commercially available devices. The resulting transistor has dramatically improved thermal properties, which may lead to better performance for RF systems.

"These GaN-on-diamond HEMTs could enable a new generation of RF PAs that are three times smaller than the current state-of-the-art GaN amplifiers" said Avram Bar-Cohen, DARPA program manager.

"Smaller amplifiers would lead to RF systems with better size, weight and power characteristics. Alternatively, PAs like these would be able to generate three times as much output power, leading to a stronger signal for communication systems or longer range radar. Almost any RF system could benefit from the combination of higher power, higher efficiency, and reduced size enabled by GaN-on-diamond amplifiers."

In MMIC PAs, the steepest temperature rise occurs in the first few microns below the junction and is directly related to the thermal conductivity of the entire wafer, explained Bar-Cohen.

"Providing a high conductivity substrate in intimate contact with the GaN gets us unsurpassed heat tolerance and dissipation capability. We expect this advance will substantially improve the thermally-limited high power RF systems of today."

By using a new epitaxial transfer method, performers at TriQuint Semiconductor were able to remove the GaN from its growth substrate and place it in intimate contact with a synthetically grown and specially prepared diamond substrate. Synthetic diamond has the highest known thermal conductivity of any manmade material, more than 10 times higher than the common semiconductor material, silicon.

NJTT, an effort of DARPA's Thermal Management Technologies (TMT) program, focuses on reducing the thermal resistance of the near-junction region of compound semiconductor devices.

Performers in NJTT, which began in 2011, are exploring epitaxial transfer of GaN from silicon and silicon carbide (SiC) to diamond substrates and direct growth of diamond in thermal vias etched in SiC. The goal of TMT is to explore and optimize new nanostructured materials and other recent advances for use in thermal management systems.

.


Related Links
DARPA's Near Junction Thermal Transport (NJTT)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
High performance semiconductor spray paint could be a game changer for organic electronics
Winston-Salem, NC (SPX) May 01, 2013
Researchers at Wake Forest University's Organic Electronics group have come up with a novel solution to one of the biggest technological barriers facing the organic semiconductor industry today. Oana Jurchescu, an assistant professor of physics, and a team of researchers developed a high performance organic semiconductor 'spray paint' that can be applied to large surface areas without losi ... read more


CHIP TECH
Scientists Use Laser to Find Soviet Moon Rover

Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

CHIP TECH
NASA Invites Public to Send Names And Messages to Mars

Studying meteorites may reveal Mars' secrets of life

NASA says Mars rover Opportunity back on the job after standby time

Opportunity in Standby as Commanding Moratorium Ends

CHIP TECH
NASA's Chief Defends Commercial Spaceflight Agreements

NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

CHIP TECH
On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

CHIP TECH
NASA to pay Russia $424 mln more for lift into space

NASA Extends Crew Flight Contract with Russian Space Agency

Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

CHIP TECH
Checkout is underway with O3b Networks' four satellites to be orbited on the next Arianespace Soyuz launch

The Well-Built Italian

O3b Networks' first four satellites arrive for the next Arianespace Soyuz launch

On the record with... Stephane Israel, Arianespace Chairman and CEO

CHIP TECH
Two New Exoplanets Detected with Kepler, SOPHIE and HARPS-N

Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

CHIP TECH
NASA Partners With Utah State University's Space Dynamics Lab

Silicone liquid crystal stiffens with repeated compression

Researchers tackle collapsing bridges with new technology

Penn Research Helps to Show How Turbulence Can Occur Without Inertia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement