Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
New Method Finds Most Distant Supernovae
by Staff Writers
Mauna Kea HI (SPX) Jul 09, 2009


Cooke developed this new method to study the explosive death of stars that are 50 to 100 times the mass of the Sun. The progenitor stars of this kind of supernovae, the type Iin, are distinct because they shed most of their material into the cosmos just before they die.

Astronomers have yet again rewritten the record books for discovering the most distant supernovae. Using Hawaii's W.M. Keck Observatory and Canada-France-Hawaii Telescope (CFHT), a team has identified remnants of two massive stars that exploded roughly 11 billion years ago.

Studying the deaths of these early stars is essential to understanding the evolution of the Universe and how its elements were formed and distributed to create later stars and even planets, said cosmologist Jeff Cooke of the University of California, Irvine.

He added that while the newly identified explosions may be the farthest of any supernovae type found to date, the innovative method developed to identify the explosions should make it possible to discover even more distant supernovae - possibly even a few of the very first stars to blow themselves apart.

Cooke developed this new method to study the explosive death of stars that are 50 to 100 times the mass of the Sun. The progenitor stars of this kind of supernovae, the type Iin, are distinct because they shed most of their material into the cosmos just before they die.

When the stars finally explode, they spew out their remaining material, which ploughs into the previously expelled gas. The collisions make the entire stellar remnant so bright that its glow can still be detected many years after the star's demise.

To find the most distant of these supernovae, the astronomers examined archival data from the CFHT Legacy Survey to identify four, extremely distant objects that appeared to brighten and then fade over time, resembling distant supernovae.

Cooke, who led the team, explained that cosmologists typically identify supernovae by comparing nightly images of the same patch of space taken at regular intervals throughout the year. The images show several hundred to thousands of galaxies, and a slight increase in the amount of light in any one of the galaxies in one image compared to the previous image may indicate a star has blown apart and died.

Using this knowledge, the astronomers stacked and blended a year's worth of CFHT images taken of the same, dark patch of sky and did this for four separate years.

Stacking the images into one composite enable the team to detect fainter objects and thereby probe farther back in the Universe. "It's like in photography when you open the shutter for a long time. You'll collect more light with a longer exposure," Cooke said.

By comparing composite images over the four years, Cooke's team identified four potential supernovae. The astronomers then used the Low Resolution Imaging Spectrograph (LRIS) on the Keck I telescope and the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope to analyze the spectrum of light that each object emitted to determine the objects' composition and distance.

The data showed that the light from the supernovae had traveled nearly 11 billion light years to reach Earth. Both the results and the new method appear in the July 9 edition of Nature.

Cooke's technique is "powerful and reliable," because "it's simple, clean and the results are unambiguous. In retrospect, I can't believe we haven't capitalized on this method sooner," said astronomer Alicia Soderberg, who studies supernovae at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. And was not involved in the study. The technique will revitalize research on this kind of supernovae and will provide astronomers with a much-needed process to probe the deaths of some of the earliest stars in the Universe, she added.

Prior to this discovery, astronomers' records showed that the most distant supernova of this type exploded roughly six billion years ago, and the most distant of any supernovae type exploded roughly nine billion years ago.

Cooke said that by studying extremely distant supernovae, astronomers will better understand where stars were exploding just after the Big Bang and how stellar properties change as the Universe evolved. And, because stars form heavier and heavier elements in their core, the technique might also give astronomers a glimpse of how the elements essential to planet formation and to the existence of life were initially created and distributed throughout the cosmos.

"This new method could not have been published at a better time," Soderberg said, explaining that many large survey telescopes, such as the Large Synoptic Survey Telescope, will soon be online to identify thousands of candidate supernovae.

Astronomers can then use large eight to ten meter telescopes, such as Keck, to obtain the necessary deep spectra of the supernovae to determine their distance and the abundance of elements that they spew into space after they explode.

.


Related Links
W. M. Keck Observatory
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
Fermi Telescope Probes Dozens Of Pulsars
Washington DC (SPX) Jul 06, 2009
With NASA's Fermi Gamma-ray Space Telescope, astronomers now are getting their best look at those whirling stellar cinders known as pulsars. In two studies published in the July 2 edition of Science Express, international teams have analyzed gamma-rays from two dozen pulsars, including 16 discovered by Fermi. Fermi is the first spacecraft able to identify pulsars by their gamma-ray ... read more


SPACE SCOPES
40 years on, Paris shows 'A Man On the Moon'

Seeking Synergy To Return To The Moon

Forty years ago man first walked on the moon

LRO Sends First Lunar Images To Earth

SPACE SCOPES
NASA works on Spirit's extraction

NASA Phoenix Results Point To Martian Climate Cycles

Landforms Indicate Recent Warm Weather On Mars

Opportunity Moves To Outcrop For Rest

SPACE SCOPES
Europe launches study into manned spacecraft scheme

Stacking Of New Space Vehicle Begins At Kennedy Space Center

NASA to talk about the Apollo legacy

Green Room helping Japanese expedition

SPACE SCOPES
China to launch Mars space probe

China To Launch First Mars Probe In Second Half Of 2009

China Launches Yaogan VI Remote-Sensing Satellite

China Able To Send Man To Moon Around 2020

SPACE SCOPES
ISS Appearing Nationwide Over July 4 Weekend

Cargo Ship To Undock From ISS, Serve As Technical Platform

Space Station Room With A View

Progress To Undock From ISS June 30

SPACE SCOPES
Brazil Plans To Expand Rocket Launching Base At North

Russia launches US radio satellite: report

Largest-Ever Telecommunications Satellite Launched

ILS Proton Launches SIRIUS FM-5 Satellite

SPACE SCOPES
STScI Joins The Search For Other Earths In Space

Five 'Holy Grails' Of Distant Solar Systems

Planet-Forming Disk Orbiting Twin Suns Revealed

Planet-Hunting Method Succeeds At Last

SPACE SCOPES
Satellite Successfully Performs Post-Launch Maneuvers

LockMart Awarded Concept Development Contract For USAF Space Fence

Bridges built from recycled plastic

Vietnam To Operate Its First Satellite Image Receiving Station




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement