Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
New Beam Source For Brookhaven Accelerators
by Staff Writers
Upton NY (SPX) Oct 21, 2010


As with the gold ion collisions at RHIC, which have used less gold than is found in a single wedding ring over RHIC's ten years of operations, the amount of uranium used will be extremely small and not pose any radiation risk to either Brookhaven Lab staff or the public. "A handful of soil typically has more naturally occurring uranium than we'll be using in a year at RHIC," Alessi said. Also, EBIS will use the dominant naturally occurring form of uranium, U238, which cannot "split" and sustain a nuclear chain reaction like U235.

A new source of ions will soon be the starting point for the beams entering two major research facilities at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory - the Relativistic Heavy Ion Collider, where physicists are recreating conditions of the early universe to learn more about the forces that hold matter together, and the NASA Space Radiation Laboratory, where scientists study the effects of space radiation to help find ways to protect astronauts.

The new facility, the Electron Beam Ion Source (EBIS), will produce and accelerate beams with greater versatility than the current system, allowing studies with new kinds of ions previously unavailable to the researchers. EBIS recently received formal approval to start operations from DOE.

"This new system uses EBIS and two small accelerators as a replacement for the Tandem Van de Graaff accelerators, which have been running successfully for 40 years, but with certain limitations when it comes to producing ion beams for RHIC and NSRL," said Jim Alessi, leader of the group that designs and operates "pre-injector" accelerator systems at Brookhaven.

For example, because the Tandems must start with negatively charged ions - atoms with one extra electron - they can only produce beams from about half the elements in the periodic table. EBIS can start with positive ions or even neutral atoms, allowing the creation of ion beams from almost any element.

For the RHIC program, physicists are most interested in creating and colliding beams of uranium ions because of their football shape and large number of protons and neutrons.

Head-on collisions of two tiny uranium ions positioned like colliding spiraling footballs would produce a speck of matter with even greater energy density than the spherical gold ion collisions currently creating a hot soup of quarks and gluons at RHIC). This higher energy density will allow scientists to study the evolution of this early-universe substance over a wider range of conditions than has been previously accessible at RHIC.

Head-on collisions with the uranium ions oriented vertically, like footballs prepared for a kick-off, are also of great interest: They will permit scientists at RHIC to separate the effects of extremely hot matter formed when two spherical gold ions overlap only partially on impact (forming a similar football-shaped interaction region) from effects of the ultra-strong magnetic fields produced in such non-head-on collisions.

At NSRL, scientists are interested in testing the effects of ions of noble gases like helium, neon, and argon, because these are common components of galactic cosmic rays and could pose a significant risk to astronauts on long-term space missions.

Another major advantage is that EBIS can feed beams of different ions to each facility at practically the same time. Said Alessi, "We can provide one type of beam to RHIC and, one second later, we can provide a different type of beam to the NASA program.

"We can switch back and forth between different types of beams quickly, so the two programs can schedule their experiments and run simultaneously, independently of one another, rather than having to use the same kind of ions at the same time or plan their runs sequentially."

EBIS works by trapping atoms or ions in an electrically charged chamber inside a 1.5-meter-long cylindrical superconducting magnet. The voltage holds the charged ions in the chamber while an electron beam generated at one end passes through, systematically stripping electrons off the trapped atoms. For helium gas, there are only two electrons to be stripped off to create a beam of helium ions, where each has a 2+ charge.

"For gold - the heaviest ion collided at RHIC to date - the ions start off with one electron already stripped off, but they are held in the trap until 32 electrons have been removed, resulting in a beam where each ion has a net charge of 32+. "The longer you hold the beam in the trap, the more electrons you can strip off," Alessi said.

When the desired number of electrons is removed (that is, when the desired charge state has been reached), the voltage is turned off and the beam is released from the trap.

The ion beams then move from EBIS through two small linear accelerators that bring the beam up to the energy needed for injection into the next accelerator - the Booster and then NSRL or the Alternating Gradient Synchrotron and then RHIC.

The high charge achieved in EBIS greatly simplifies the entire acceleration process. "If you have more charge on the ion, then it gets higher energy for the same voltage in the accelerator.

So by producing an ion with a charge of 32+ in the case of gold, the energy it gets across a fixed voltage is larger than it would be with a lower charge. Since you need lower voltage to accelerate the ions, then you can do this over a much shorter distance - 10 feet vs. about 80 feet in the Tandems - resulting in a more compact accelerator."

That compactness along with the modern accelerator technologies used in EBIS and the two linear accelerators will make the new pre-injector system easier to operate and maintain, leading to more cost-effective operations. "Once we finish commissioning and debugging the system, EBIS will be extremely reliable," Alessi said.

EBIS will begin providing helium ions to researchers at NSRL this fall. The first uranium collisions at RHIC may take place as early as late winter or spring 2011. Meanwhile, and even after EBIS starts operating, the Tandems will continue to run to provide beams for a community of outside scientists who use that facility for dedicated research on electronic components for industrial and space applications.

The EBIS pre-injector system was jointly funded by NASA and the DOE Office of Science.

.


Related Links
NASA Space Radiation Laboratory
Relativistic Heavy Ion Collider
DOE/Brookhaven National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
One-Dimensional Window On Superconductivity And Magnetism
Houston TX (SPX) Sep 30, 2010
A Rice University-led team of physicists is reporting the first success in a three-year effort to build a precision simulator for superconductors using a grid of intersecting laser beams and ultracold atomic gas. The research appears this week in the journal Nature. Using lithium atoms cooled to within a few billionths of a degree of absolute zero and loaded into optical tubes, the researc ... read more


TIME AND SPACE
NASA to buy private moon data

NASA Awards Contracts For Innovative Lunar Demonstrations Data

NASA Thruster Test Aids Future Robotic Lander's Ability To Land Safely

NASA official: Moon still matters

TIME AND SPACE
Emerging Underground Aquifers Formed Martian Lakes

Revealing More About The Atmosphere Of Mars

Rover Nears 15 Miles Of Driving On Mars

Long-Lived Mars Odyssey Gets New Project Manager

TIME AND SPACE
NASA Space Technology Could Transform Life On Earth

Building Europe's Vision For Space Exploration

NASA Selects 215 Small Business Research And Technology Projects

A New System For Locating And Capturing Satellites In Space

TIME AND SPACE
International Crews for Shenzhou

China Eyes Extended Mission Beyond Moon

China's second lunar probe enters moon's orbit: state media

Lunar Probe And Space Exploration Is China's Duty To Mankind

TIME AND SPACE
New International Standard For Spacecraft Docking

Counting Down For ESA MagISStra Mission To Space Station

Glamorous spy sees Russian rocket blast off for ISS

Russian rocket blasts off carrying three astronauts to ISS

TIME AND SPACE
Hylas-1 Satellite Readied For Launch From European Spaceport

ILS Proton Successfully Launches XM-5 Satellite

Ariane Moves Into Final Phase Of Globalstar Soyuz 2 Launch Campaign

Arianespace Hosts Meeting Of Launch System Manufacturers

TIME AND SPACE
Astronomers Find Weird, Warm Spot On An Exoplanet

New techniqe aiding planet searches

Planet Hunters No Longer Blinded By The Light

How To Weigh A Star Using A Moon

TIME AND SPACE
Apple, Blackberry spar over smartphone sales, tablets

Preliminary Design for New Long-Range Surveillance Radar Completed

The Satellites Have Eye Contact

Tech giants Samsung and Apple more friends than rivals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement