Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
NIST polishes method for creating tiny diamond machines
by Staff Writers
Washington DC (SPX) Sep 30, 2011


This colorized electron microscope image reveals the boxy shape of the pits the NIST team etched into the diamond surface, exhibiting their smooth vertical sidewalls and flat bottom. The pits were between 1 and 72 micrometers in size. Credit: NIST.

Diamonds may be best known as a symbol of long-lasting love. But semiconductor makers are also hoping they'll pan out as key components of long-lasting micromachines if a new method developed at the National Institute of Standards and Technology (NIST) for carving these tough, capable crystals proves its worth.* The method offers a precise way to engineer microscopic cuts in a diamond surface, yielding potential benefits in both measurement and technological fields.

By combining their own observations with background gleaned from materials science, NIST semiconductor researchers have found a way to create unique features in diamond-potentially leading to improvements in nanometrology in short order, as it has allowed the team to make holes of precise shape in one of the hardest known substances.

But beyond the creation of virtually indestructible nanorulers, the method could one day lead to the improvement of a class of electronic devices useful in cell phones, gyroscopes and medical implants.

Well known for making the hugely complex electronic microchips that run our laptops, the semiconductor industry has expanded its portfolio by fabricating tiny devices with moving parts. Constructed with substantially the same techniques as the electronic chips, these "micro-electromechanical systems," or MEMS, are just a few micrometers in size.

They can detect environmental changes such as heat, pressure and acceleration, potentially enabling them to form the basis of tiny sensors and actuators for a host of new devices.

But designers must take care that tiny moving parts do not grind to a disastrous halt. One way to make the sliding parts last longer without breaking down is to make them from a tougher material than silicon.

"Diamond may be the ideal substance for MEMS devices," says NIST's Craig McGray. "It can withstand extreme conditions, plus it's able to vibrate at the very high frequencies that new consumer electronics demand. But it's very hard, of course, and there hasn't been a way to engineer it very precisely at small scales. We think our method can accomplish that."

The method uses a chemical etching process to create cavities in the diamond surface. The cubic shape of a diamond crystal can be sliced in several ways-a fact jewelers take advantage of when creating facets on gemstones.

The speed of the etching process depends on the orientation of the slice, occurring at a far slower rate in the direction of the cube's "faces"-think of chopping the cube into smaller cubes-and these face planes can be used as a sort of boundary where etching can be made to stop when desired. In their initial experiments, the team created cavities ranging in width from 1 to 72 micrometers, each with smooth vertical sidewalls and a flat bottom.

"We'd like to figure out how to optimize control of this process next," McGray says, "but some of the ways diamond behaved under the conditions we used were unexpected. We plan to explore some of these mysteries while we develop a prototype diamond MEMS device."

C.D. McGray, R.A. Allen, M. Cangemi and J. Geist. Rectangular scale-similar etch pits in monocrystalline diamond. Diamond and Related Materials. Available online 22 August 2011, ISSN 0925-9635, 10.1016/j.diamond.2011.08.007.

.


Related Links
National Institute of Standards and Technology (NIST)
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Carbon cycle reaches Earth's lower mantle
Washington DC (SPX) Sep 19, 2011
The carbon cycle, upon which most living things depend, reaches much deeper into the Earth than generally supposed-all the way to the lower mantle, researchers report. The findings, which are based on the chemistry of an unusual set of Brazilian diamonds, will be published online by the journal Science, at the Science Express Web site, on 15 September. Science is published by AAAS, the non ... read more


CARBON WORLDS
NASA Partners Uncover New Hypothesis On Crater Debris

China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

CARBON WORLDS
SpaceX says 'reusable rocket' could help colonize Mars

Help NASA Find Life On Mars With MAPPER

Drilling into Arctic Ice

Lockheed Martin Completes Primary Structure of NASA's MAVEN Spacecraft

CARBON WORLDS
Not Because It Is Easy

World's First DNA Astronauts to Launch Into Space

Rohrabacher Demands Release of NASA's Recent On-Orbit Fuel Depot Analysis

OSU partners with NASA

CARBON WORLDS
Civilians given chance to reach for the stars

Tiangong-1 Forms Cornerstone Of China's Space Odyssey

"Heavenly Palace" China's dream home in space

Chief designer explains Chinese way of mastering space docking technology

CARBON WORLDS
Private US capsule not to dock with ISS

Crew safely returns to Earth after crash

Russia postpones next manned launch to ISS

Russia announces launch of 2 spacecraft in Oct-Nov

CARBON WORLDS
Sea Launch resumes operations after 2-year break

Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

CARBON WORLDS
Doubts Over Fomalhaut b

Earth's Trapped Gas Fed the Early Atmosphere

From the Comfort of Home, Web Users May Have Found New Planets

Rocky Planets Could Have Been Born as Gas Giants

CARBON WORLDS
China cracks down on fake iPhones: report

RIM says committed to PlayBook amid price cuts

Orbiting ORS-1 Satellite System Operating Successfully

Chemistry team produces a game-changing catalyst




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement