Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
NASA Building Four Spacecraft to Study Magnetic Reconnection
by Karen C. Fox for Goddard Space Flight Center
Greenbelt MD (SPX) Feb 27, 2014


Watch a video on the challenges associated with the construction of the Magnetospheric Multiscale mission spacecraft. Image courtesy NASA/Goddard Space Flight Center.

First thing every morning, the engineering team for NASA's Magnetospheric Multiscale mission gathers for a 10-minute meeting. A white board sits at the front of the room with the day's assignments - who will wrap tape around the wires, which instruments need to be installed where, which observatory needs to undergo its next test.

This is the nerve center for the MMS engineers and technicians at NASA's Goddard Space Flight Center in Greenbelt, Md. Goddard is tasked with an unprecedented feat for the center: building four identical observatories simultaneously.

The four spacecraft will launch together on a single rocket and then maneuver out into a pyramid configuration to orbit Earth. On its journey, MMS will observe a little-understood, but universal phenomenon called magnetic reconnection, responsible for dramatic re-shaping of the magnetic environment near Earth, often sending intense amounts of energy and fast-moving particles off in a new direction.

Not only is this a fundamental physical process that occurs throughout the universe, it is also one of the drivers of space weather events at Earth. To truly understand the process, requires four identical spacecraft to track how such reconnection events move across and through any given space.

Building four spacecraft at once has many advantages. It saves on time and mission cost. However, such a massive undertaking requires meticulous logistical planning.

"This is the first time NASA has ever built four satellites simultaneously like this," said Craig Tooley, project manager for MMS at Goddard. "It feels like we're planning a giant game of musical chairs to produce multiple copies of a spacecraft. One instrument deck might be 2/3 finished, while another one is 1/3 finished, and the same people will have to test a nearly complete deck one day, and install large components on another one another day."

One of the earliest important feats for this group of engineers and technicians came during the design phase. Each spacecraft must carry, in addition to the navigational and power instruments, 25 scientific instruments. These had to be carefully laid out so that each instrument had a full range of view and so that the eight booms sticking out from the spacecraft would not interfere with any other instrument's line of sight or electromagnetic systems.

The instruments themselves were constructed and assembled around the world at a variety of institutions. Each one was then shipped to Goddard to be placed in its specific spot on what's called the instrument deck.

Each spacecraft contains two decks, one for the science instruments and one for the power and navigation tools. The decks are made of two aluminum sheets bonded on either side of an inner, honey-comb-shaped layer also made of aluminum. The second deck is called the spacecraft deck. It supports a power box, a computer, transmitters and receivers, a star tracker to help with orientation, and batteries for power during solar eclipses.

The two decks are attached to struts, with the instruments facing each other in the middle. A central thrust tube carries four propellant tanks. Solar arrays span the space in between the decks.

Above and beyond installing all the instruments, each spacecraft sports hundreds of wires that connect the instruments to the main computer and power sources, as well as the instruments to each other. Not only does this entire harness need to be installed, but technicians must hand wrap every wire in insulation to shield the sensitive instruments from electrical interference.

"The sheer amount of labor just to put in all these connections is stunning," said Gary Davis, spacecraft systems engineer for MMS at Goddard. "When you're building four at a time, the team doesn't get a break. If one spacecraft is in testing, then the team works on a different observatory."

It is just this kind of juggling that must be done every day: Which engineer goes where and which spacecraft goes into which cleanroom, as each follows its journey of instrument insertion, wiring, testing, and more engineering.

In addition to the physical engineering, the software on board must be tested too. Such testing requires that the spacecraft be powered up, which consequently prohibits simultaneous mechanical or electrical work.

"The work is so interesting and even fun, but with a schedule this complicated we have to make some careful choices about who is doing what," said Davis. "We also have to make sure the team pushes ahead at the right pace. We want to move ahead as quickly as safely possible, but no faster." Safety is, indeed, the team's number one concern.

Since May 2013 all four observatories have been integrated with all necessary science instruments and flight hardware. Since then, they have undergone a wide range of ground tests - rigorous electrical, vibration, acoustics and thermal testing to ensure they can withstand the launch and extreme environments of space and launch conditions.

After testing is complete, the four observatories will be shipped, two at a time, isolated on a truck bed with exquisite air and temperature control, to Astrotech in Titusville, Fla., for launch processing and then to NASA's Kennedy Space Center in Florida for launch. Engineers will complete the final closeout. The propellant will be loaded into the tanks. The spacecraft will be carefully encapsulated into the rocket fairing for launch. And, at last, after four years of engineering, the four obseratories will finally fly.

.


Related Links
NASA's MMS mission
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
Counting Down to GPM
Tanegashima, Japan (SPX) Feb 26, 2014
Join NASA in counting down to the launch of the Global Precipitation Measurement mission's Core Observatory, starting at noon EST, Thursday, Feb. 27. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency, and it will set a new standard in measuring rain and snow around the world. As we build up to the launch from Tanegashima Space Center in Japan, NASA scientists w ... read more


EARTH OBSERVATION
China Focus: Uneasy rest begins for China's troubled Yutu rover

China's Lunar Lander Still Operational

Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

EARTH OBSERVATION
NASA's Curiosity Mars Rover Views Striated Ground

NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

EARTH OBSERVATION
Last Shuttle Commander Virtually Flies Boeing CST-100 to ISS

DARPA Open Catalog Makes Agency-Sponsored Software and Publications Available to All

India unveils its own astronaut crew capsule, plans test launch

Orion Underway Recovery Testing Begins off the Coast of California

EARTH OBSERVATION
The Next Tiangong

No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

EARTH OBSERVATION
Cosmonauts on space station to turn teacher for Russian students

Space suit leak happened before, NASA admits

NASA Seeks US Industry Feedback on Options for Future ISS Cargo Services

NASA, International Space Station Partners Announce Future Crew Members

EARTH OBSERVATION
Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

First Copernicus satellite at launch site

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

EARTH OBSERVATION
Kepler Mission Announces a Planet Bonanza, 715 New Worlds

Detection of Water Vapor in the Atmosphere of a Hot Jupiter

Water is Detected in a Planet Outside Our Solar System

NASA cries planetary 'bonanza' with 715 new worlds

EARTH OBSERVATION
Penn Researchers 'Design for Failure' With Model Material

In the eye of a chicken, a new state of matter comes into view

USAF reveals 'neighborhood watch' satellite program

Science publisher fooled by gibberish papers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.